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F
1.0 IntroductiOn

A Phase II SBIR contract was awarded to Space Tech Corporation to
develop a new computer architecture for WSMR STEWS-ID-TA. Foo Lam was
technical monitor and was assisted by John Williams. Michael Andrews was the
principal investigator at Space Tech. Several Space Tech employees were
involved with this effort. Steve Hall was responsible for the early design
concepts of the CPH. Larry Hall was responsible for the VPH design effort.
Jeff Weideman worked on the cache, address generator, IOP, and VHE buffer
boards. James Ott worked on the cache board. Phil White tested the crossbars
and finalized the backplane design. John Stevens generated the 10 drivers and
Steve Sharp contributed to the VPH coding.

Major DOD agencies found that to upgrade their hardware development
systems to keep up with advancing technology remains a large effort. Yet, a
major hidden cost is more than a simple acquisition of equipment. Engineer
retraining and software redevelopment easily magnify the total system costs.
In early 1980, Foo Lam at the Instrumentation Directorate at White Sands
Missile Range discovered a uniquely innovative solution: build a hardware
emulator that can be universally applied across several life times of
architectural technologies and modify only the microcode. Hence, a fixed and
constant cost will remain in contrast to an escalating level of effort eachtime the next hottest microprocessor comes out.

White Sands Missile Range like most other test ranges must constantly
upgrade computing facilities to take advantage of cost effective solutions. A
proliferation of different microprocessors and development systems spread
among the several laboratories reduces the commonality of effort. Code
written in one application is likely to be unsuitable to another. Testing
such code is also challenging when dissimilar hardware is encountered. A type
of universal or meta-machine would help minimize portability constraints.

In response to this need, Lam's meta-architecture was discovered that
could emulate many diverse types of microprocessors from RISC to CISC. Aptly
called the Cascadable Processor Hardware, the CPH machine can be easily
microcoded. More importantly, the architecture can be made to emulate any
wordlength from 8- to 128-bits. Fixed-point and floating-point arithmetic for
IEEE and DEC formats are executed. Special fast DSP routines are microcoded
so that mere calling routines need be executed. And because of the microcode
capability, a user can program in the language of his desired microprocessor.
Two significant cost savings accrue. First, the ARMY proponent need no longer
purchase costly development systems each time another micro wants to be
incorporated. Secoid, he need not have to sacrifice real-time emulation
because the CPH is really a sixth generation architecture, mostly capable of
emulating architectures int the early 2000s.

Initial architectural studies were completed by Dr. Javin Taylor at New
Mexico State University. Latf:, Space Tech Corporation was awarded a Phase I
and Phase II effort to respond to this requirement. As a result a novel
architecture was designed that is fast, flexible, and cascadable. The long-
term goals of Mr. Lam's visionary architecture achieves the following
objectives. Cascadability is easily supported by merely plugging into the
backplane another processor and no new microcode is necessary.

9
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The heart of the architecture is a fully concurrent crossbar chip. The
novel chip is a 12x14 port switcher which can be dynamically configured in
only one clock cycle (currently 20 neecs). The chip is also directly
cascadable so that extensible wordlengths can be supported in hardware with no
software cycle penalties. The crossbar chip is employed in the processor
section and the address generator section thus attesting to its universality.
No doubt, the crossbar will find equal applications in modem switchers, beam
splitters, antenna beam formers, telemetry, telephony, and massively parallel
processing architectures.

During this Phase II effort, a microprogramming development tool was
designed called MICROASM. This tool development was jointly funded by support
from a Phase II SBIR contract with WSMR and SDC-Huntsville. Mr. K. Pathak
sponsored this work at SDC.

This report is organized as follows. The early sections describe the
developmental history of the Phase I and II projects. A reading is helpful to
understand the eventual device selections for the functional units. A very
brief description of the units and the overall EVA architecture can be found
in Section 2 as well. Section 3 begins the detailed explanation of the
resources including the operation of those modules that have been fabricated
such as the VPH. Section 4 introduces some of the concepts in programming
the CPH. Section 5 describes the microprogramming tool, MicroAsm, which will
be important when the CPH is to be coded. Sections 6 and 7 discuss the
results and suggestions for future work.

1.1 Developmntal History of EVA (zted•able Vector Architecture)

EVA is an extended vector architecture computer. It consists of two
major functional subsystems, the CPH and the VPH. The CPH architecture
evolved in the course of a ten year period with the current effort of a Phase
I and Phase II SBIR. EVA is designed to support a cascadable system whereby
users can insert multiple CPH boards into the system and extend the
wordlength. The architecture has been in development over several device
technology evolutions. It has seen change from the first 8-bit slice AMD 2900
chips through the current 64-bit slice BIT 2120 multipliers. That it has
withheld change over these years attests to its conceptual strength. These
developmental efforts are described next and will be important to the reader
when the current architectural issues are discussed.

1.1.1 Phase I Reeareh Effort

Details of the Phase I effort are found in the Phase I Final Technical
Report. The technical objectives are cited next to outline the steps that
were taken during Phase I.

1. Study and organize the EVA architecture into efficiently coupled
modules for radar and signal processing. In this step, data transfer
techniques were investigated to increase I/O transfers at the chip and board
levels. Optimal trade-offs were determined among engineering parameters of
power, board size, and speed of operation so as to render EVA machinery fast
and efficient for laboratory and range instrumentation applications.

10



2. Determine the optimal trade-offs between fixed-point and floating-
point number systems. Also, analyze the rounding and truncation issues and/or
the overflow and underflow issues with respect to fixed-point and floating-
point operations in the EVA. The objective was to identify efficient
wordlengzhs for signal processors in EVA-like architectures.

3. Study optimal ALU configurations that speed up signal processing in
EVA architectures. The objective here was to determine the ideal
configuration (16x16, 32x32, or larger multipliers) which supports the
processing bandwidths required.

4. Research the usage of fast controller circuits that may utilize
centralized or distributed PLAs. The objective of this step was to improve
arithmetic processing speeds while reducing or at least maintaining low
control wire count from the control unit to the control points in the
architecture.

5. Research microprograms for fixed-point and floating-point signal
processing algorithms executable on EVA architectures. The objective was to
developed sets of signal processing micro-routines that could be ported across
architectural changes.

The following sections describe the efforts undertaken at Space Tech
Corporation (STC) to satisfy the objectives set forth above. The basic
architecture for the EVA organization as determined from Phase I is shown in
Figure 1. The basic architecture derived for the VPH in Phase I follows in
Figure 2. During Phase II the VPH architecture was modified to include a
better VME interface controller chip, the MVME 6000, and PALs were used

Sinstead of the Motorola BAMs for speed reasons. The remaining VPH retained
much of its Phase I characterization during Phase II. In fact, the VPH final
design exceeded its Phase I speed estimates for the lk FFT. The 730 usec
benchmark was reduced to 604 usec in the final Phase II architecture.

The EVA is an architecture concept whereby high-speed yet versatile and
efficient computations are a must. In order to reach an acceptable compromise

p between these conflicting needs, the process of selecting the building blocks
for each component of the EVA architecture considered several issues.
Minimum/maximum cascadable increments (8, 16, or 32 bits CPH only), execution
speed, versatility, availability, amount of "glue logic" needed, overall chip
count, and maximum utilization of available resources are just a
representative sample of the issues considered.

Figure 1 depicts the block diagram of the 32-bit EVA architecture
containing the Vector Processing Hardware (VPH) and the Cascadable Processing
Hardware (CPH) modules. It has been determined that all of the modules will
connect to the VMEbus. The VMEbus data transfers between modules can handle
up to 32 bits in one transfer, however the CPH allows up to 64-bit on-board
data manipulations when two CIH modules are incorporated. One CPH module will
support up to 32-bit wordlengths. This cascadability allows users to maximize
the use of available resources.

I
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The VPH is ideally suited for high-speed signal-processing applications
where efficient, complex-data number-crunching is of the utmost importance.
The heart of the VPH (the ZR34325 also referred to as the VSP-325 and shown in
Figure 3) is capable of executing high-level, vector oriented instructions
which embed the DSP algorithms directly into the device, allowing efficient
algorithm execution. Moreover, a VSP-325 based architecture facilitates
algorithm partitioning in the sense that multiple VSP-325s can be paralleled
in order to share in the data processing requirements. Hence, while the VSP-
325s perform parallel processing with interleaved I/O on the data from one RAM
section, the host or the CPH can be up-loading or down-loading data into the
other memory bank of the VPH. Once the current activities are completed, the
roles of the VPH memory banks are reversed. This function-swapping is the
primary reason, for the efficiency and high throughputs attainable with the
VPH.

In order to fully capitalize on the processing power of an EVA
architecture, the system bus configuration must be equally capable of
interfacing with the host, and within modules of the architecture. A study
was made to identify the most optimal bus arrangement which allows maximum
exploitation of the capabilities of the EVA architecture. The study did not
consider 16-bit bus configurations such as the STD bus, MULTIBUS I, UNIBUS,
and Qbus. The reason is that these systems do not satisfy current DSP and/or
military real-time demands, nor are they capable of supporting the dynamic
range required in such applications.

The Phase I effort concluded with an EVA architecture to support both
DSP via the VPH and cascadability via the CPH. The Phase II effort began a
year later. The gap in time offered STC and WSIR the opportunity to
incorporate new technology advances. Phase II began with a review of those
advances.

1.1.2 Pha•e 11 Dmmlopuumtal Effort

Through engineering analysis, STC proposed in Phase II to review,
update, and modify the preliminary EVA designs developed during Phase I of
this effort. The objective was to ensure integration of the latest technology
and design techniques in order to guarantee longevity and usability of EVA
over a wide range of applications. Of paramount importance was the
determination of the optimal number of board and interboard cabling and
control requirements for efficient operation of the cascadable architecture.

The EVA remains an architectural concept whereby high-speed,
versatility, and efficient computation are balanced. The scope of this Phase
I1 project was to develop a system that incorporates cascadability and high-
speed data- and signal-processing. The building blocks, designed in Phase I,
for each component of the EVA were expanded into efficient, working modules.
A signal processing software library, containing algorithms that enhance the
usability of the EVA architecture, was studied but not fully developed.
Targeted applications for the EVA included range instrumentation, radar signal
processing, digital focusing, spectral data processing, Kalman filtering, and
real-time target motion resolution.

14
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In order to fully capitalize on the processing power of an EVA
architecture, the system bus configuration must be equally capable of
interfacing with the host, and within modules of the architecture. Phase I
preliminary studies and Phase II review showed that the VME system provides
the speed, versatility, and generality required in an EVA-like architecture.
STC incorporated a bus configuration within the EVA to allow maximum
exploitation of the architectural capabilities. Moreover, its asynchronous,
non-multiplexed protocol insured longevity of the system. This is
accomplished by providing the flexibility to incorporate faster devices into
the system design, without having to redesign or upgrade the interface block.
This allows the system performance to be upgraded as superior technology is
developed. In addition, various processors and peripherals can operate at
various speeds without having to wait for proper timing to get on/off the bus.

Initially, the Phase II proposal identified the following cascadable
processing hardware as depicted in Figure 4. The VPH and EVA architectures
were depicted in previous figures. During the course of Phase II, the
cascadable processing hardware (CPH) underwent major changes described in
Section 1.2. Those changes came as a result of significant component
developments described next.

1.1.2.1 Bignificant EVA Companet Considerations

From extensive discussions with the WSMR-ID-TA staff, it was determined
that the BIT2110 and BIT2120 devices would serve as the main processing
engines in the CPH. Each is ideally suited as a 32- and 64-bit device. Also,
such devices provide pathways to future ALUs with minor changes to the
microcode and boards. The VPH numerical engine selected was the Zoran 325 DSP
device which became available during Phase II. The 325 chips performed as
needed. In many cases they exceeded the speeds of other choices such as the
Motorola 56000 and 96000. The AT&T DSP 32C and T132020 devices were too slow
for the WSMR applications and were discarded early in the design selection
process of Phase II.

During Phase II GaAs technologies became mature such as the Gazelle
serial transceivers. These GaAs chips provide data transfer rates in the
gigaflop range and serve as the high speed link between the VPH and the CPR.
This prompted further investigations into ultra high speed buses. The high
speed 10 or HSIO bus was designed on this basis. This bus, described in a
later section under the CPH/VPH link section, was used to make 32- and 64-bit
data transfers among the modules in the CPH. Those modules include the
processor, cache memory, address generator, and lOP.

In 1991, the VPH design was impacted favorably by the introduction of
economical 4-port memories. The 4-port memory circuit shown in Figure 5 made
the VPH board requirements smaller. The device was incorporated into the
design for the program space of the VPH so that the DSPs could share the data
space with the 68020 and the ISA interface. This made a truly versatile
architecture for multiple processing tasks.
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Lastly, the EVA architecture became significantly fast when a custom
crossbar was designed by Steve Hall. This crossbar depicted in Figure 6 was
to make a significant impact on the large scale integration of the processor
and address generator boards. The original organization was a 12x12
configuration as shown. Later modifications required an 12x14 organization.
However, internally, the functional areas remain as in this figure.

1.1.2.2 v t of 110 Coinfl ation

Before an indepth design of the CPH could have begun, the host interface
design needed to be investigated. Hence, a major design issue was to
determine how the CPH is to be viewed from the standpoint of the host or
system controller. Three basic schemes described next were investigated early
in Phase II. The CPH Bus-Based system was finally chosen.

19
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Primitive Processing Unit

This is the simplest possible view of the CPH. In this scheme, the CPH
functions as a processor with virtually no control intelligence. The host
provides the data to be processed, the microprogram code to be executed, and
explicit control instructions on where in CPR memory to place the data and
microcode and where to begin execution. Output from the CPR to the host would
be handled in a similar fashion. In this scheme, the host/CPH interface would
involve some rudimentary handshaking logic to initiate transfers, and logic to
allow the host to access CPH memory.

Intelligent lOP

This is the next more sophisticated view of the CPH. In this scheme, an
I/O processor would be incorporated into the CPH which would have a fair level
of control intelligence. The lOP would handle all transactions between the
host and CPH. The lOP would have access to the CPH memory space, and would
handle the task of informing the CPH where data is located, where to begin
execution, and all handshaking between host and CPH. In this scheme, the
host/CPH interface would require some processing ability of its own - probably
a microprocessor such as a 68000. Some additional logic to support the
microprocessor would be required.

CPH Bus-Based System

This is the most sophisticated view of the CPH. In this scheme, a high-
speed bus would be developed for the CPR. A bus controller would link the CPH
bus to the CPU backplane. An intelligent interface would link the CPH bus to
the host. All transactions between CPR end host would be handled by both the
host interface and the CPR bus controller. In this scheme, resource
requirements would far exceed those of either method previously outlined.

Impacts, Comparisons, and Additional Considerations

If the primitive approach is taken, CPR throughput will be negatively
affected, since a great deal of system overhead exists for the host to service
the CPH. The tasks of processing and I/0 cannot occur concurrently. If the
IOP approach is taken, a marked increase in system throughput can be achieved.
This is largely due to the fact that the lOP can handle 1/0 tasks while
processing of other data is being done. The increase in throughput may indeed
be significantly improved under this scheme, as it is likely that I/O time for
a given task will be equivalent to the processing time required. Throughput
may be increased by as much as a factor of two.

Implementation of a bus-based CPH could provide a similar increase in
throughput, as well as increase overall system flexibility, since additional
special-purpose modules could be designed to hang on the CPU system bus. In
terms of impact on development costs, the IOP approach would add very little
to development costs. A few more chips would be required than if the CPU is
capable of only very rudimentary 1/0, but the price of these additional chips
is nothing when compared to the cost of system memory. Design time would be
increased very little, as some type of 1/0 circuitry must be developed. While
the implementation of an lOP is more sophisticated than the primitive
approach, the task of design may actually be somewhat simplified because of
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having a microprocessor to handle control and routing of data.

Development of a system bus for the CPH would be the most expensive in
terms of both resources required and design time required. A number of
additional considerations should be taken into account in determining which

I/0 approach to take. Among these is the idea of developing a macro or
assembly language for the CPH. The CPH is a poor architecture for
implementing looping or branching in programs. Also, processing of scalar
operations is not one of the CPH's strong points. This means that under the
primitive approach to I/0, separate and distinct microprograms mst be written
for every task it is to accomplish. Writing microprogram. is a complicated,
time-consuming task that requires an intimate knowledge of the architecture.
In addition, implementing scalar operations in microcode results in
inefficient use of processor time.

Designing an IOP for the CPH would allow development of a library of
fundamental microcode routines which could be assembled into many useful, much
larger routines. These assembled routines might not make the most efficient
use of the processor, but in terms of time saved in not having to write long,
complicated microprograms, this could be a very attractive feature to
potential users. In addition, the microprocessor used in the IOP could be
used to improve processing of scalar operations - something for which the
microprocessor is more well-suited than the CPH. For the project at hand,
development of the macro language does not have to be done, but if this
capability is desired, it must be designed in now, or the system will have to
be redesigned at a later time when the feature becomes desirable. This is a
waste of both time and money.

Development of a system bus is important in a multi-CPH system, or in a
turnkey or stand-alone CPH-based system. Currently, development of an lOP for
the system seems a desirable and cost-effective approach to take.
Microprogram storage RAM costs about $.40 per instruction, and data cache RAM
costs about $.08 per word. External memory for storage of lOP data and
programs would cost less than $.0025 per word. When viewed in this light, the
lOP approach may be the least expensive approach to take, since RAM space for
storing IOP programs is much less expensive than RAM space for microcode
routines to handle I/0. The microprogram memory will not have to be as deep
if an lOP is used, and the money saved on microprogram storage space will
likely pay for the parts required to construct an IOP.

1. 1.2.3 Development of EVA Control 8tore

In order to effectively use EVA with as many microprograms as possible,
a writable control store organization was chosen. This organization allows
the user to load in at runtime as many microprogram as is needed for a
sequence of tasks. This type of control store then makes very efficient usage
of the costly high speed RAM by loading and subsequently unloading precious
space. Reusing the control store space requires different supporting hardware
than an EPROM or fixed microcode memory.

A typical control store circuit is shown in Figure 7. With this design,
one sees that interruption, micro-level subroutining, and context switching
are supported as is necessary in writable control stores. An adder is
included in order to compute address offsets so that relative addressing can
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be supported at the microcode level. In writable control store architectures,
relative addressing is necessary, otherwise users could not download
microprograms without wasting writable control store space. To avoid the
loss, every microprogram should fit in the next available location. However,
that location would not be known a priori. So some hardware must be included
in the controller to offset locations from the last microprogram loaded into
the WCS.

Stack pointers can also be supported by the stack pointer registers in
the upper left portion of Figure 7. This facility makes microprogram coding
simpler and alleviates complicated address calculations by the user in
advance. Stack pointers also facilitate subroutine calls and nesting. An
address space exceeding 64k is desired because of the several simultaneously
loaded microprograms which should be resident in the WCS. Thus, the counters
and adder should handle 20-bits instead of 16-bits (16-bits spans only 64k).

Examining off-the-shelf components for a microsequencer 20-bit adder
faster than 50 nsecs found no such devices. Even the counter must be built up
from discrete devices in order to achieve 50 nsec speeds. An estimate of the
chip count for discrete logic components for the complete sequencer indicates
that at least 50 24-pin chips may be needed. The Phase II investigation
proceeded to analyze faster and denser FPGA chips, among those included the
chips from Plus Logic. It was found possible that one FPGA will replace 50
random logic devices. The board space savings became very attractive. But in
addition, the ability to reprogram an FPGA without having to redesign the
entire PCB became more attractive.

During 1990, software was received from Plus Logic to evaluate the FPGA
devices STC anticipated for the microprogram sequencer and address generators.
That code helped STC to lay out a chip from the standard cells available from
Plus Logic. Using a FPGA is important because design changes can now be made
to the device instead of the already manufactured PCB (which may be cost
prohibitive). STC anticipated using the Plus Logic devices for a 20-bit adder
and counter. The major issue in the speed was the need for carries and
borrows across 20-bits.

Five 4-bit adders could have been used but carry lookahead circuits must
be built. Xilinx, at first, appeared to be an adequate solution but later
investigation showed that Xilinx cells were only suitable for random logic and
not adders and counters. The basic Xilinx cell called a Configurable Logic
Block (CLB) is depicted in Fig',re 8. Each cell is comprised of two FFs and a
combinatorial logic section containing a program memory controlled
multiplexer. Subsequently, the FPGA design for the two dimensional counters
was completed with some custom library components provided by Plus Logic.
Every I/0 pin and functional block of the FPGA2020 was used.
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It was desired that part of the EVA microprogram sequencer could be fit
into an FPGA. Plus Logic began working on a custom component for another
company which is an adder, mux, and incrementer all in one part. When this
component was to be completed, Space Tech would evaluate it and determine if
it could be used as part of the microprogram sequencer. It wasn't completed.

Several of the CPH's circuits required large numbers of small and medium
scale integrated circuits. Some of these could be reduced down to a few chips
with the use of Field Programmable Gate Arrays (FPGAs) from Plus Logic. FPGAs
from other sources had been evaluated and found unsuitable for use in the CPH.
High speed adders and counters are required. Plus Logic FPGAs can be used to
implement counters of any number of bits which can be clocked at 40 MHz.
Adders have a carry propagation time of I nsec per bit. This was
significantly faster than any other FPGAs.

Plus Logic's FPGAs are constructed with an EPROM technology which allows
them to be easily reprogrammed. This is another advantage of using FPGAs in
the CPH. The ability to modify a section of circuitry on an FPGA as opposed
to modifying a printed circuit board is an important feature. A mistake or
modification to a printed circuit board could require a new board. This would
mean an NRE charge of several thousand dollars. With extensive use of FPGAs
and PALs it is possible to change a circuit without actually rewiring the
circuit board. The larger the FPGAs, the better the chance of being able to
make a change.

FPGAs also result in a significant parts reduction. For example, the
seltion of the address generator board containing four two dimensional
ccounters and an incrementer file would require 125 chip.. With the use of
Plus Logic FPGA2040 arrays the parts count could be reduced to 16. However,
these chips are not yet available. The us, of the proposed smaller (and
available) FPGA2020 arrays would result in a part count of 36. The savings of
board manufacturing costs and engineering costs ý-Ione offset the cost of the
Plus Logic development system. The basic 2020 device is depicted in Figure 9.

1.1.2.4 De.ilopmmnt of PC Interfaae Board

To coordinate design, development, and testing, a special PC interface
board was designed first. An initial candidate for the PC interface board was
designed based on the following assumptions. First, WSMR will use a Zenith
286 to interface to the CPH. Second, the same board will be used to test the
CPH boards during code development at STC where a 286 PC will be used. Third,
the interface control from the perspective of both machines (the PC as well as
the CPH) is basically, "the PC (or CPH) sees a register from which to 'write
to' or 'read from'". However, the PC is a 16-bit bus and the CPH is a 32-bit
bus. Hence, the interface board must multiplex data accordingly depending on
the direction of the data. Fourth, the board was designed to easily interface
to typical bit-slice architectures such as the CPH. Fifth, the board shall be
capable of driving high-speed data across long distances. Here, the IEEE RS-
422 receivers are used. To invoke the simple handshake protocol earlier,
FIFOs were used on the board. FIFO signals such as almost full and almost
empty are to be monitored.
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4 1 .1.2.5 Study of PCB Manufacture Techniques

Central to the eventual Phase II objectives was a study of PCB
techniques. A search and analysis of quality board manufacturers was done
with the indepth feedback from Unicircuit in Englewood, Colorado. The factors

with the greatest impact on cost and complexity of manufacture include the
number of layers and the use of interstitial or blind vias. (A blind via is a
hole which is buried inside the layers or only comes out one side of the
board. Using such a via makes bed-of-nails testing almost impossible because
the fixture cannot touch this via directly.) The physical dimensions of the
eventual board have some effect when the board exceeds 8" x 10". Trace widths
less than 8 mils and via sizes smaller than 15 mils would also significantly
increase cost. When the boards are to be layed out, special via. will be
reduced and replaced with another layer since this approach is less costly.
Traces and spaces of 10 mils can be used effectively. Manufacturers suggested
that this line width offers the best price per real estate.

1990 tooling charges were approximately $100 per layer. Fabrication
costs for an 8-layer board with low complexity were approximately $200 for a
board of approximately 8" x 15". Costs for creation of the bed-of-nails test
fixture for checking board integrity are about $500 on the basis of a pin
count of 3000.

Subsequently, PCB fabrication, assembly, and test were approximately

$1700 per board, assuming 10-layer boards with pin counts up to 2000 per
board. EVA architecture originally anticipated 4 boards, a CPH, an IOP, a

cache memory, and the VPH. At a minimum, $1200 was to be expected for the PCB
effort of a single board. It did not include parts or functional circuit
testing at STC. Final costs rose to $2200 per board.

1.2 Results of the EVA Phase 11 Project

As mentioned earlier, the Phase II development effort underwent
significant changes to the Cascadable Processor Hardware (CPH). Figure 10
depicts the current CPH. It differs from the previous architecture in that
two ALUs and two multipliers are embedded on each board instead of one each
per board. From design efforts early in Phase II, it was determined that
doubling the processing power on a CPH board could reduce the data traffic
bottlenecks for the HSIO and facilitate 64-bit processing on one board instead
of two. In order to accomplish this integration, a new chip was designed
called the Crossbar. This chip was fabricated by ILSI in Colorado Springs for
the EVA architecture and is described in a later section. Such a chip was
necessary to reduce the several multiplexers into one single device for the
CPH. The datapath from ALUs to general purpose registers in Figure 11 was one
example of significant crossbar usage. Later, it was discovered that the same
chip could be used in the address generator board.
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The EVA organization began to solidify by the second year into several
boards. A site visit by Mr. Lam and John Williams from WSMR-ID reviewed the
new EVA architecture. Later, discussion with ID found a direct application
with another WSMR SBIR contractor, Mentor. The Mentor application included
radar tracker processing. The majority of that processing task centered
around the Kalman filter. This directed the STC design team's attention to
fast address generation for the complex matrix operations. An address
generator was sought that would produce complex addresses in hardware at real-
time speeds so that no computational overhead would result. And a study of
matrix algorithms was initiated to ensure that EVA throughput was high. That
algorithm study is discussed in Section 4.

Each board performed a separate and distinct function so that a
cascadable design became feasible. As an introduction, those boards are
briefly discussed in Section 2.0. The boards as organized developed into a
very powerful computing engine and exceeded the performance specifications of
the Phase II proposal by two orders of magnitude in some cases. A single EVA
machine could perform over 30 operations per clock. Hence, if a 20 MHz clock
were used, EVA would be a 600 mflop machine in a single desktop machine. The
innovation became so attractive to Space Tech that the current EVA
architecture was proposed.

Later results during the second year proved to be demanding to the
design team at Space Tech. Advanced devices that were designed into the
architecture had to be removed because the devices did not become available,
were removed from production, or were functionally changed. The Plus Logic
FPGA 2040 which was to be an integral part of the address generator never
became available. The 2020 was substituted. The AMD 29540 FFT address
generator chip was deleted from inventory. Finally, the BIT devices that were
delivered lacked some of the vital control and status signals promised in the
advanced specifications. As these were sole source suppliers, the EVA
architecture design had to undo some of the effort and restart with less
powerful chips like the FPGA 2020.

The VPH effort proceeded more smoothly since all parts remained
available throughout the project. One major new chip discovery in December of
1989 which reduced board space needs was a four port RAM from IDT with a
7052S35G part number. This single device reduced space by 20% which allowed
more functionality to be embedded on the VPH. Prior to that only the Micro
Technology MT42C8128 was available and was seriously being considered. It was
an expensive part.

During May of 1990, with considerable discussion with the technical
monitor, the value of making the architecture more general purpose became more
apparent. To that end, several changes were made to the schematic of the VPH.

The input bus to the board from the VMS was originally designed to be
only a 32-bit interface. Modifications have been made which allow the
interface to be configured either as a 16- or 32-bit bus through the use of a
simple jumper scheme. Due to the type of processing the VPH is designed to
perform, namely DSP, and the computational speed it is capable of maintaining,
I/O bandwidth becomes a serious concern. In fact, the VNE bus would be sorely
strained to keep the VPH busy. Because of this fact, it was originally
proposed to make the 68020 processor bus available off the board. This was
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proposed to allow for the development of external A/Ds and D/As which would
interface to the 68020. From subsequent discussions with Mr. Lam, it became
apparent that it would be beneficial if "off the shelf" D/As and A/Ds could be
interfaced directly to the VPH. To that end and because the 68020 bus is so
similar to the VME bus, it was decided in May of 1990 to provide a rudimentary
VME bus, devoid of the layers of protocol, but able to support simple I/O
boards. The final design of 1992 provides full VME bus, however, due to the
desire to interface to single board computers (SBC) acting as masters.

The form factor of the VPH board was selected to be a VME 9U and has the
capability of holding 4k words of data RAM. Because 4k words is not enough
memory for some large data set problems, it was decided to allow for memory
expansion. Expansion is accomplished by the addition of daughter cards which
sandwich to the base board. Each daughter card contains an additional 4k
words and all of the required bus buffering and decoding. Up to three
additional boards may be added to the base board, bringing the data ram up to
16k words. Provisions have been made to support the new 4kx8 chips when they
become available. This would double the data space.

The need for flexibility gave rise to a possible enhancement to the VPH.
Because of the similarity of the VME and the IBM-AT and EISA bus
architectures, investigations as to the possibility of mounting the VPH in an
external box with power supply and minimal interfacing logic proceeded. This
would allow the same board with no modifications, only additions, to be
interfaced to a commonly available and inexpensive computational platform.

By June of 1990, a general VPH concurrent operating scheme for a status
latch through which the five processors may share status information was
agreed upon with WSHR. The need for such a status latch arose from the multi-
processor nature of this system. Consider, as an example, the task of
performing a two-dimensional FFT, with processing by all four Zorans. Roughly
stated, the procedure is to first perform FFTs on the rows of the matrix, then
perform FFTs on the resulting columns. The four Zorans share the work of
performing these FFTs. Because of the way the problem will be partitioned,
the Zorans will not complete the initial task of computing row FFTs at the
same instant. Some delay must then exist for some of the processors before
the col-m FFTs may be computed. The status latch concept will allow the
Zorans to keep track of the status of their companion processors without the
intervention of the 68020, keeping it free to perform other tasks. Later it
was agreed that assigning each processor two status bits should allow for
ample versatility.

Examination of a preliminary design for the status latch shared among
the processors revealed that the design was deficient in several respects.
The latch would allow any processor to write status bits to the latch, but in
the case of the Zorass, whenever one Zoran wrote its status the status of its
bus companion would be lost from the latch. To prevent loss of status bits
from the latch, a duplicate image of the status bits for both Zorans on a bus
would have to be maintained in the PRAM for that bus. A Zoran expecting to
write its status would first read the status image in the PRA], would write
back to PRAM an updated status nibble reflecting the new status, and would
finally write the updated nibble to the status latch. This sequence requiresa read and a write to PRAM and a write to the status latch. The time involved
is not a major concern, since writing out status info represents only a very
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small fraction of the tasks performed. However, this sequence of operations
contains a hazard which could result in problems. Between the time a Zoran
reads and writes to the PRAM and then writes to the status latch, it is
feasible that it might lose mastership of the bus. In the event that the new
bus master is the companion Zoran updating its status, the original Zoran,
upon regaining mastership of the bus, will write a status nibble to the latch
which is erroneous. While the chances of this sequence of evints occurring is
rather slim, such an occurrence could prove fatal to a process, since an
incorrect reflection of processor status could effectively "lock-up" a bus.
It was determined that this design for the status latch would be scrapped in
favor of a different design which will avoid the previously-discussed hazard,
require only a single write to update status, and additionally, use less-
expensive components in its implementation.

32



I
' 2.0 Br3 f D"cription of VPI and CPR l-bhitctura

Much of the developmental history of EVA has been given in Section 1 so
that one could have an appreciation for the design approach. In this section
the reader will see the influence of the developmental history on the
interfaces among the EVA functional units and the host. As stated earlier,
EVA is composed of two main functional units, the VPH and the CPH
architectures. EVA can be organized to expand in two dimensions, one through
adding additional VPH boards and the other through adding additional CPH sub-
systems. Adding additional VPH boards is straightforward. All that is
necessary is a simple insertion in the VE backplane. However, the CPH
expansion uses different microprograms that share the common data buses. It
is even possible for the CPR to share the same cache memory. In this manner a
user saves two additional boards, a cache memory board and an address
generator board. But, the additional cost savings should be compared with the
larger and more complex microprograms needed for sharing a single cache memory
space.

I The design philosophy of EVA has been to provide a user friendly system
that can be expanded easily. The advantage to this approach is obvious. The
disadvantage is the increased system complexity of a very general
organization. To understand the organization further, the following sections
describe the interfaces to hosts and the internal control of the CPH. Both of
these high level views will aid the reader in comprehending the EVA computer.
The following paragraphs quickly outline the major functional capabilities on
each of the boards. Section 2.1 concentrates on the multiple CPH interfaces.
Section 2.2 focuses on the VPH interface and programming model. The VPH, as a
separate unit, is intended for operation in any computing system with a VNE
backplane. Hence, it is important to grasp the VME interface capabilities of
the VPH. More specific descriptions of the CPH and VPH follow in Section 3
and are useful for the microprogrammer.

PROCESSOR BOARD DESCRIPTION

The processor contains two multipliers, two ALUs, microprogram storage
memory, a crossbar, a register file, and various I/0 ports. Many
configurations are possible by using different interconnections between
processors and combinations of processors and memory banks. Descriptions of
the processor's major components follow now.

ARITHMETIC COMPONENTS

The multipliers and ALUs support a wide range of number formats. These
include 32 and 64 bit fixed-point, single and double precision IEEE floating-

* point, and DEC F and G formats. Each multiplier has a throughput of 20
megaflops for all number formats. The ALUs each have a throughput of 40
megaflope for all number formats, however, the bandwidth of the buses may
limit double precision throughput to 20 megaflops. Total throughput of 120Smegaflops could be possible with a single processor board.
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MICROPROGRAM STORAGE RAM

The processor operates on a 50 nsec instruction cycle. Each
microinstruction is 192 bits wide by two phases long. Each phase is like a
separate instruction 25 nsec long, although they are always selected in pairs,
giving a 50 nsec instruction cycle. The memory is 16,384 deep. That's 16,384

instructions by 2 phases by 192 bits. This memory can be written to through
the I/O ports, 64 bits at a time.

RECONFIGURABLE REGISTER FILE

The register file has 64 double precision registers organized as an 8 by
8 array. Four independent ports allow high speed access to the registers.
Two ports are write only and two are read only. Each port has its own address
and a bandwidth of 40 MHz. Two reads and two writes can be done
simultaneously. All accesses are synchronous, so a single location can be
both read from and written to in the same instruction cycle.

The register file also has four different modes of operation. One is
normal RAM access. The others link register locations into multiple
pipelines. Configurations of 8 pipelines 8 deep, 4 pipelines 16 deep, and 2
pipelines 32 deep are possible. When configured as a pipeline, writing data
to the first location of a pipe causes all data in that pipe to be shifted to
the next register location. Data may be read out from any stage of the pipe.

CROSSBAR NETWORK

All arithmetic components, register file ports, and I/O ports are linked
by an extensive crossbar network. Each arithmetic component has two input
ports and one output port. These, along with external I/O ports and register
file ports, have a dedicated port into the crossbar. This allows for all
possible paths to occur simultaneously. All paths may be switched
simultaneously at a rate of 40 MHz.

I/O PORTS

The processor board has 6 dedicated input ports, 4 dedicated output
ports, and two bidirectional ports. Each port is 32 bits wide with a
bandwidth of 40 MHz. These ports may be used to link the processor to memory
banks or link multiple processors together or both.

ADDRESS GENERATOR BOARD DESCRIPTION

The address generator is a specialized processor with an architecture
optimized to generate complex sequences of addresses for various vector and
matrix operations. This will offload the arithmetic processor and allow
higher throughputs. Hicroprogram. for complex routines will be much shorter
and easier to write. The address generator architecture has 4 two dimensional
counters, 2 address look up table RAMs, microprogram storage memory, address
output ports, a register file, and a crossbar. All data paths and components
of the address generator are 16 bits wide.
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4TWO DIMENSIONAL COUNTER

Each two dimensional counter contains 2 preloadable up/down counters,
two adders, two registers, and a multiplier. This hardware is designed to do
array subscript expansion. After initializing, the counter can simultaneously
index up or down the rows and columns of an array. This allows many complex
routines to be programed quickly and efficiently. Each of the four counters
can be used to access a different array or vector in memory. Three of these
counters contain an FFT address sequencer. This will allow various types of
FFTs, including two dimensional FMTs, to be programmed efficiently.

ADDRESS LOOK UP TABLE RAMS

These RAMs can be used for indirect addressing or for storing sequences
of addresses too complex to calculate in real-time. Each of these RAM are 16
bits wide by either 32k or 64k deep. They can be accessed at a rate of 20
MHz.

MICROPROGRAM STORAGE MEMORY

The size of this memory is 16,384 instructions by 2 phases by 188 bits.
It functions the same as the processor's memory.

MICROPROGRAM SEQUENCER

This sequencer generptps addresses at a rate of 20 MHz to be used to
access microprogram memory *nd provide program flow control. Both relative
and direct addressing mwdes are possible. A stack of 4096 words is used for

4 subroutine calls and a 16 bit counter is provided for loop counting.

ADDRESS OUTPUT PORTS

Three 18 bit ports are provided for outputting addresses. Each of these
ports can run at a rate of 40 MHz. A 16 bit microprogram address output port
is also provided. This feature allows the microword of the address generator
to be combined with the processor and memory boards.

I REGISTER FILE

The register file for the address generator is identical to the register
file for the processor. Its primary use is for address pipelining and storing
pointers.

CACHE MEMORY BOARDS

4 The cache memory is used to store reasonably large amounts of data for
use by the processor. The memory is organized as two banks of triple ported
static RAM, one bank for real data and the other for imaginary data. In each
instruction cycle one complex word can be written and two complex words can be
read from cache. All writes occur in the first clock phase and all reads in
the second. This eliminates all possibility of conflict. A single location
can be read from and written to in the same instruction cycle.
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The cache memory hardware consists of memory blocks. Each block has two
banks of triple ported RAM. Each bank is 32 bits wide and the depth is
dependent upon which memory modules are used. Depths of 4k, 16k, and 64k are
currently possible. Each cache memory board has space for two memory blocks.

Memory blocks, via software control, can be linked together into banks.
Linking can be achieved both vertically, for greater depth, and horizontally,
for wider word width. Two blocks can be linked horizontally for 64 bit word
width. Any number of blocks can be linked vertically for a bank size up to
256k words. Up to 16 banks can be configured simultaneously, however, the
processor can only access one bank at any instant in time. Banks can be
toggled or paged through rapidly and any bank not being accessed by the
processor can be accessed by I/O.

2.1 CP interface ArexlLtecture

The multiple interfaces among EVA are described in this section,
beginning with the CPH. This is to allow the reader a v7.ew from the host
computer:'s perspective and lay a foundation for the intimate hardware details
of the CPH and VPH in Section 3. EVA is primarily interfaced to a host via
the PC interface or ISA bus. Another interface was planned earlier for EVA
with a DT Connect bus but this proved to be costly to the VPH board space and
was subsequently not included in the design. However, the design effort is
documented in the next section for completeness. In 1990, this bus appeared
to become a defacto industry standard. By 1992, its popularity faded
inhibiting further versatility to other CPH applications.

2.1.1 CPRIPC Interface

STC currently uses essentially the same ISA interface structure for both
the CPH and VPH. Advantages of going this route, as opposed to using very
different interface designs as was originally planned, include lower NEE for
the ISA-end cards, since only a single board design needs to be manufactured.
Also, the low-level ISA drivers are the same for the CPH and the VPH, so time
in software development has been realized. Another advantage is the ability
to interconnect the CPH and VPH through the common interface. This would
allow for some development of a CPH/VPH coprocessing system. The limited
bandwidth of this interface would obviously limit the usefulness of such an
interconnection in any real application, but it would certainly be adequate
for fundamental development.

The user view of the PC interface is depicted in Figure 12. In that
figure, the reader can see that the interface is comprised of a set of FIFOs
for READS and WRITES. Flags are available in a status register to monitor the
FIFO contents. Those flags include "almost full" and "almost empty" so that
very general device drivers can be used for the EVA computer. The interface
can also be interrupt driven as well as program driven and interrupt flags can
be found therein.
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A parity bus transceiver connects to the PC bus so that even and odd
parity can be checked. The selection is made via the status bits in the
status register and the appropriate driver code. Both the PC and EVA ends
must observe the chosen protocol. For physical distances greater than 3 feet,
the RS-422 interface was chosen. Twisted pair shielded cable then insures
noise free operation. Programming the interface board is described in Section
3.2.6. Also, to take advantage of the high nature of DSP applications, the VPH
intended for DSP has a slightly different interface on its end. The
differences are discussed in Section 3.2.6.1.

2.1.2 DT Connect Interface

One of the planned interfaces for the VPH was a DT Connect interface.
Inclusion of this interface would allow systems to be implemented using Data
Translation's data acquisition boards and possibly frame grabbers along with
the VPH as the processing engine. Such a system might be desirable in light
of the fact that Data Translations data acquisition products appear to be
competitive in terms of bandwidth, etc., but their array processors aren't
very fast. (The DT7020 array processor appears to be their quickest
processor. This unit is rated at 8 Mflops peak, as compared to around 120
Mflops peak for the VPH.) The DT Connect interface is intended as a high-
speed data path between acquisition devices and processors which are in close
proximity to one another.

The DT Connect interface is very loosely defined. The deinition
consists of the pinouts on the connectors, the timing for the da!a and
asynchronous handshake lines, and the electrical handshaking protocols
implemented with the handshake lines. No limits on cable length are stated,
but because the cabling is driven with conventional TTL drivers such as the
74ALS244 or 74AS244, and in light of the statement in the specification that
the data can be clocked at something over 10 MHz, it is obvious that cable
length will be limited to about 30 cm. This limitation could pose some
serious restraints on putting together a system using Data Translation
acquisition boards and a VPH.

The DT Connect interface is available only on Data Translation's
products aimed at PC/AT-based systems. The need for a high-speed data path
between acquisition devices and processors in a PC-based system is obvious due
to the limited bandwidth of the ISA bus. Data Translation did the obvious
thing to alleviate this problem in establishing the DT Connect pathway between
their acquisition and processor boards. Because the VPH will not be on an AT
form factor card, the usefulness of a DT Connect interface for the VPH is
highly questionable.

As stated before, a practical limit on cable length is around 30 cm, and
this is about the length of cable that would be needed just to get the cable
out of the AT case. A cable long enough to exit the AT case and connect to a
VPH placed close to the AT would be well in excess of the 30 cm limit.

A number of possible solutions or partial solutions to this obstacle
present themselves. The simplest solution is possible due to the asynchronous
nature of the DT Connect interface. The VPH end of the interface can easily
govern the transfer rate. The transfer rate could therefore be limited to
ensure reliable data transfer to occur across the cab'.e. STC estimates that
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the data clocking rate could be on the order of 2 MHz for an effective data
rate of 4 MB/s. This data rate is lower than that of the ISA bus itself,
which makes the solution seem very undesirable in light of the fact that our
existing ISA interface can easily meet and probably beat the 4 MB/s rate of
exchange. The only obvious advantage to using a rate-limited DT Connect
interface is that the ISA bus would be free during transfers, which would in
turn allow the AT to be performing some other processing task concurrent to6the data transfer. If Data Translation software were being used on the AT,
the transfers across the DT Connect interface could most likely be handled as
standard DT Connect transfers by the software. On the other hand, it is
questionable whether Data Translation software could handle control of the
VPH. Depending on the ability of their software to link in user-generated
routines for non-Data Translation system components, this solution might be
totally unworkable if a user intends to use Data Translation software. If a
user is willing to write all the software for driving the VPH and any Data
Translation boards present in his system, this is a possible solution. As
stated before, the penalty in speed reduction of the interface begs the
question of the practicality of the solution, even in a situation where the
user is willing to develop necessary software.

Another solution which seems somewhat more practical would be
development of a combination ISA/DT Connect interface for the VPH. Such an
interface would have a paddle card at the AT end which would plug into the ISA
bus, would provide DT Connect ports into the interface, and provide a

Sconnector for cabling to the VPH. A number of advantages to such a scheme
exist, including the likelihood that a design could be done which would impose
much less significant limitations on maximum data transfer rates. It is also
possible that such a scheme might allow the VPH to "look like" a Data
Translation board so that no problems would occur when using software specific
to Data Translation systems.

The disadvantages to this approach are primarily centered around the
issue of development time. An ISA interface for the VPH is already in
existence, and this design would need a good deal of modification in order to
be made compatible with both ISA and DT Connect. An additional NRE andimanufacturing charge would be incurred for production of the AT paddle card.
In addition, if the approach of making the VPH look like a Data Translation
board were taken, a great deal of research into protocols and architecture of
Data Translation's processors would be necessary. It might prove very hard to
get the necessary information. Also, a good deal of additional firmware
development would be necessary if the VPH were to emulate a Data Translation
processor. Considering these points, STC doesn't believe that this is a
viable solution.

A partial solution would involve design of a fairly generic high-speed
interface for the VPH. This interface could provide the ability to develop an
AT paddle card to provide DT Connect translation at some future date. In
terms of development costs, this seems like a much better approach. In
addition, such a generic interface could provide the ability to develop
translators for any number of other buses and/or interfaces to which we might
want to connect at some future date. STC believes that the existing VPH-end
ISA interface may be modified to provide such a generic interface.Modifications might include increasing the width of the I/O data paths and
increasing the amount of control logic in order to make the adaptability of
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the interface as robust as possible.

2.1.3 PICPH Interface

A number of possible methods of implementing such an interface are
possible, and the best solution is an "augmented" VME link between the VPH and
CPH. This "augmented" VME link utilizes the standard 32-bit data path of the
VME bus, and additionally uses 32 of the user-definable bits on the bus as
additional data bits, making the effective width of the link 64 bits. This
enables a maximum data transfer rate of 80 Mbytes/second between the VPH and
CPH. This transfer rate stretches the limits of the VPH, and requires playing
with how I/O occurs on the VPH board when VPH/CPH 64-bit transfers are
occurring. This high data transfer rate makes the added circuitry worthwhile,
since it greatly enhances the real-time capabilities of a CPH/VPE system, and
effectively cuts the required number of required bus cycles for any given
VPH/CPH transfer in half, thereby reducing loading of the host bus.

The CPH is also equipped with a ViE interface through its VNE buffer
board, although its VME interface is somewhat more rudimentary than that of
the VPH. This allows the VPH and CPH to be housed in a common enclosure.
This common enclosure actually contains two separate backplanes - a VME
backplane and a proprietary backplane for the CPH boards.

In previously proposed VPH architectures, the VPH/VME interface shared a
port of the 4 port SEAM with the ISA interface. This arrangement allowed for
VME communications to occur transparently as far as the 68020 was concerned,
which would allow the 020 to do simple system trafAic control concurrently
with VME transfers. The likely kinds of traffic control that might be
performed during VlE communication would necessarily be limited to such things
as status updating or polling of status of the Zoran processes. A limitation
of this architecture is that the VME can only access the 4 port SEAM space.
Data or program code that is being transferred into other memory areas would
need to be transferred out of SEAM and into the actual destination by the 020.
This puts additional demands on the 020 and also results in real transfer
times being inflated due to the double transfers necessary.

In the current VPH architecture utilizing the MVNE6000, the VHE
interface has access to the entire VPH address space. This will allow the VNE
interface to access data in any section of memory on the VPH board, including
the memory on the Zorans, eliminating the need for 020 transfers from 4 port
SEAM to actual destinations. The ViE accesses the 4 port space through the
020'. port via the 020 bus. This imposes the limitation that while VNE
transfers are occurring, the 020 is essentially locked out and can't perform
any local processing tasks. This limitation is of only small consequence,
especially when balanced against the elimination of double transfers that
require 020 control.

Transfers between the VPH and CPH are performed by using the VNE
standard 32-bit data path and using 32 of the user-configurable bits to widen
the effective data width to 64 bits. The additional 32 bits of data are
written to/read from the ISA port of the 4 port SRAM. This allows for data
transfer rates far in excess of the bandwidth of a single port into SEAM
(about 50 NB/s) and effectively doubles the stated VH1 bus specification of 40

aB/s maximum.
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4 Another advantage of the new VPH architecture using the MVY6000 is that
the VPH, by virtue of the capabilities of the 6000 chip, may be used as a VIE
system controller. This is likely to have a large impact on marketability.
The VPH is able to be a system controller, which will allow use of standard
VME system components such as memory and data acquisition boards to function
under VPH control, without the need for an expensive VME host system or VlE
controller. This could be very attractive to anyone who needs the
capabilities of a VPH but doesn't have a VME host system. It could also be
attractive to anyone who does have a VM host system, but would like their
vector processor to be able to master the system.

In terms of the immediate goals of this project, the new architecture
has a number of advantages. Primary among these advantages is the ability to
configure a CPH/VPH system which does not require a VE host system. With the
ISA interfaces resident on both the CPH and VPH, a very powerful processing
station may be configured with a CPH, a VPH, a good ISA machine, and the
previously described backplane and enclosure. A wide variety of off-the-shelf
data acquisition and interfacing boards are available for VMK, so interfacing
such a CPH/VPH/ISA system to virtually any type of sensors or other data
sources should be relatively straightforward. Unusual or highly specialized
interfacing applications are handled by an appropriate VlE-compatible
interface board (the VlE buffer board in Section 3.2.5).

2.2 VPN Acbcitectuzr

The Vector Processor hardware or VPH consists of 4 Zoran 325 DSP devices
and a 68020 floating-point processor configured to perform DSP operations in a
wave fashion. The 68020 can operate independently of the DSPs. The VPH is a
single board in a 9U VIE quad high footprint. It can interface to a 9U or 6U
VME platform. A MVE 6000 master slave controller device on the VPH assists
data transfer across VME systems.

The VPH block diagram is shown in Figure 13. Here, one can see that the
DSPs and the 68020 talk to a 4-port SEAM from data and program storage. A PC
interface is also provided for code development and system monitor. The PC
interface is a fast parallel port data transfer. For 6U VlE transfer an
additional VlE buffer board is provided. The VPH is intended to be plug
compatible with the SUN workstations to enhance intensive numerical
computations via a set of provided math libraries.

4
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2.2.1 ISA Interfse.

An important task of the VPH project has been the study of the host-to-
VPH interfaces. Two such interfaces are possible - the primary VNE interface
and a secondary ISA interface. The ISA interface will allow the VPH to be
configured into a PC/AT system. This allows development of a variety of VPH
software without the need for access to a VNE machine. The ISA/VPH
combination is not a very efficient way in which to utilize the VPH due to the
limitations of the ISA bus, but should prove convenient for development
purposes, and may even be useful for some applications. A number of
extensions to the VE standard are also in existence. These extensions are
designed to improve certain aspects of VNE system performance, and to add
flexibility to the VNE bus. These extensions were examined to see if any of
their features are suited to the VPH. The two extensions were examined: the
VSB bus (VHE Subsystem Bus) and the VXI bus (VNEbus eXtensions for
Instrumentation).

The ISA interface is realized as a block of four 8-bit I/O ports on the
ISA side of the interface. Two of these ports form a 16-bit data port into
the VPH, while the other two ports form a 16-bit control/status register
through which the VPH may relay status information to the ISA host. Also, the
ISA host through this same port gives control/command information to the VPH.
The basic command set includes Block Transfers to/from the VPH, Block Moves
between memory domains within the VPH, RESET of the VPH subsystem, and
commands to the 68020 to begin execution of internal code. The VPH will be
capable of interrupting the ISA host to indicate task completion. The
interrupt level used is user-selectable in order to configure the VPH into
"most ISA systems without creating conflicts with other boards. The VPH also
posts task status in the status register area so that the host may poll this
register to look for task completion, rather than being interrupted. This
could be handy in some applications, but the main reason for this feature is
to prevent interrupt conflicts in ISA systems that have other resources using
all available user interrupts (This is a typical problem with ISA systems.).

The ISA host is capable of interrupting the 68020 to initiate transfers
of data and/or commands, or it may poll the status registers to see if the VPH
is in an "idle" state which will allow the host to effect various operations
by setting specific bits in the command register.

Transfers of data to the VPH is accomplished with the help of a 16-bit
presettable up/down counter in the interface which will allow transfer of data
to contiguous locations in the 4-port SEAM with a single address being passed
to define the starting point for the block transfer. This allows for the
maximum possible data rates between the host and VPH.

The VPH interface in mapped into the ISA I/O space rather than PC memory
space. The interface is essentially a contiguous block of four I/O locations.
These locations will be user-selectable, since add-on cards use a wide variety
of the available I/O addresses. Because of the fact that a block of only four
locations will be required by the VPH, a user should have no problem
successfully configuring the VPH into a system. This requirement of four
contiguous locations is small when compared to most add-on cards - even
something as simple as a serial port typically requires eight contiguous I/O
locations.
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The I/O mapped approach does not allow the ISA host to read or write a
specific location in a single transaction cycle since the address bus won't be
available to the interface. The address and data must be passed in two
separate cycles. Rates of data transfer could be seriously impacted by this
requirement. This problem is solved by giving the interface the ability to
provide incremental addresses for accessing contiguous locations in the SRAM,
eliminating the need for the host to provide an address for every word
transferred. This has virtually eliminated the potential performance penalty
of the I/O mapped approach, since the vast majority of transfers consist of
blocks of data rather than individual words.

2.2.2 VW Intersia to VP

In VVE interface design investigations, STC determined that one feature
the VPH VE interface must have is the ability to perform VNE block transfers.
This will allow the highest data transfer rates possible. Designing this
ability into the interface provided some challenges.

In order to perform block transfers, the interface must include an
address counter for accessing the SRAM. This in itself is no real problem. A
state machine must be designed which clocks (increments) the counter at the
appropriate times within the block transfer. In addition, this state machine
must generate the A01 address bit to the SEAM address decoder, since this bit
is only valid on the first transfer cycle of a block transfer.

A block transfer begins with a normal byte, word, or longword transfer.
The transfer becomes a block transfer if the DSO* and DSI* data strobes are
released and then reasserted without a negation of the AS* address strobe in
between. Once a block transfer has begun as described, the address strobe
remains asserted until the block transfer is complete, with individual
transfers being delineated by negation of both data strobes.

Once a block transfer has begun, the LWORD* and A01 and A02 - A31 bits
from the VHEbus are invalid. They are valid only for the first cycle of a
block transfer. The initial value of these bits sets up the block transfer,
and on subsequent transfers the interface circuitry must supply a valid
address and hold the LWORD * value which existed during the initial transfer
cycle.

The state machine to perform these functions would seem at first glance
to be relatively straightforward, but it was discovered that the machine is
not easy to implement in any simple way and still be able to keep up with the
timing requirements for maximum throughput. STC uses a design for
implementing the state machine in a single 20RAI0 PAL.

The MVM96000 is designed for interfacing 68020/30 processors to the VNE
bus. An analysis of this chip's specifications shown that the chip has a wide
range of functionality. With only a small handful of additional logic, the
MVHK6000 may be used to create a VHEJ680xO interface which conforms strictly
to the VIE bus specification, and which includes all VIE functions except BLTs
(block transfers), including all master/slave/system controller capabilities.
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2.3 8uzy of Interfaees

The EVA computer is comprised of several functional units each of which
have multiple interfaces. Because of the versatile conmunication paths, the
previous sections centered on those available to a user. Two boards serve as
multiple interfaces. They are the tOP board which interfaces the CPR modules
to the host, and the VTE Buffer board which interfaces to the CPH, VPH, and a
6U VME backplane so that the CPH can comunicate to a VTE system. They are
now listed for clarity.

Interface Board Description

PC to VPH VPH daughterboard VPH end of this Interface,
see Sections 2.2.1, 3.2.6.1

PC to CPH IOP 6U board plugs into
CPR backplane, see Sections
2.1, 2.1.1, 3.2.4, 3.2.6

PC to ISA PC-INT ISA bus board plugs into
286 and 386, see Sections
1.1.2.3 and 2.1.1

VPH to CPR VTE Buffer 6U board plugs into CPH
backplane, see Sections
2.1.3 and 3.2.5

VTE to VPH VPH integral part of VPH
board, see Sections 2.2.2

VTE to CPH VTE Buffer same board used to interface
to CPU to VPH and also called
SIS or Serial 10 board, see
Sections 3.2.5

Internal CPR HSIO high speed 10 bus that
communicates among the CPH
modules (processor, AG, lOP,
cache memory), see Section
3.2.7
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f3.0 Theory of Operation

With this introduction to interfaces, the theory of operation section
describes the remaining architectural details of EVA. Section 3.1 starts with
the VPH and its internal register resources. Operating the VPH will require a
thorough understanding of the VPH to VNE interface. Hence, the programmer's
model and the VPH address map are presented so that a programmer may knowjwhich addresses on the VNE bus correspond to internal VPH resources. The
address map is presented early because addresses for the 68020 are different
than those for the DSPs. (The DSPs are designed by the manufacturer to
address words. The 68020 can address bytes.) They are numerous and include
control, status registers, two program RAMs or PRAMs 1 and 2, a 4-port, and
68020 registers. Section 3.2 covers the CPH and its resources, again very

numerous including the processor, cache, address generator, IOP, and VNE
Buffer. Because some boards (e.g. the VME Buffer board) serve multiple
functions, it will be necessary to return to earlier sections at times. The
versatility of EVA is evident in its many interfaces and operating modes.
Those operating modes include VPH in VNE systems (such as the TSI tracker),
CPH/VPH as EVA, and CPH in VME systems. Note that the VNE buffer board
allows the CPH to be hosted by a system other than a PC.

J The previous sections described the general architecture and interfaces
of the CPH and VPH. With this introduction it is now possible to discuss the
operation of both in more detail. The following sections begin with a
description of the VPH resources and end with those of the CPH. In the
process, additional architectural hardware details are presented as needed.
These are accompanied by the microinstruction format and machine definition
file for the CPH found in the appendices. To understand the theory ofI operation of each functional unit it will be necessary to know much about the
individual address spaces, control signals, and assembly language, and
microinstructions of the lOP, CPH, VMS buffer board and PC interface board.
Such information is also presented in this Section.

3.1 YPI

I The VPH-20 is a multi-processor DSP board suited to FFTs, FIR and IIR
filters, spectrum analysis, Kalman (and other) adaptive filters, and numerous
other DSP tasks. The VPH-20's processing power comes from four Zoran ZR34325/ Vector Processor chips (arranged two chips on each of twn buses) and one
Motorola 68020 microprocessor. The VPH-20's unique architecture allows
concentration of all processors on a single task for the highest processing
speed, or partitioning of the processing resources to handle multiple
simultaneous tasks. The VPH-20 performs a 1024-point complex FFT in as little
as 604 us at 20 MHz (483 us at 25 MHz).

I The form factor of the VPH-20 is a standard 9U-4H (366.7 X 340.0 um)
board. This is the standard VXIbus "D"-size board. The VPH-20 requires a
single slot in the VHE/VXI backplane unless the optional PC interface
daughterboard is attached, in which case two slots are required. The VPH-20
may be used in any environment where a standard VHEbus is in existence,
including VII systems. Since none of the user-definable pins are used by the
VPH-20, it may be used in many systems which are based on a VMbus with
extensions, such as Sun Microsystems.
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Integral to the VPH-20 is a standard VNE bus interface which allows the
VPH-20 to operate in either Master or Slave modes. The system may also be
configured as a VTE System Controller board. The system architecture allows
for transactions to occur on the VHE bus without interfering with signal
processing operations.

An optional high-speed PC interface allows the VPH-20 to be tied to any
standard PC/AT-compatible computer. This interface may be used in conjunction
with the VTE interface, allowing a PC to be used for any number of purposes
such as process monitoring, data display, etc.

PDOGRý'S MDEL

A brief discussion of the system architecture including a system memory
map and the programmer's model follows. Documents which may be of additional
help include:

32-Bit Microprocessor User's Manual
Motorola #MC68020UM/AD

ZR34325 32-Bit FloarinR-Point Vector Signal Processor
Zoran Corporation #DS34325-0989-1.5K

MM6000 -VEbus Interface User's Manual
Motorola #MVME6000UM/D1

The VPH-20's four vector processors are arranged with one pair of
processors on each of two local buses. Each bus has 32k longwords of high-
speed static RAM (SRAM) for the use of the two vector processors the bus
serves. In addition, each VSP bus may access one port of the system's four-
port SRAM. This four-port SRAM is a memory resource which is common to all
system resources; the use of such a memory area allows multiple resources to
access the same memory area simultaneously and without conflict - a single
memory location may be read from each of the four ports at the same time. The
size of the four-port SRAM is 4k longwords.

Another resource common to all five processors is a status latch which
provides a simple means of providing for primitive semaphore communication
between processors. Each processor may write two status bits to the status
latch; a read of the latch yields the eight status bits from the other four
processors.

The 68020 has access to all system resources, including the local
memories on each of the VSP buses and the internal registers of the four VSP
chips themselves. The VSPs have access only to their local memory, the global
status latch, and the four-port memory. All off-board communication is
handled by the 68020.

The VMEbus interface is based on the Motorola MVE6000 interface chip.
This versatile arrangement allows the VPH-20 to function in the Master or
Slave modes, and also allows the VPH-20 to be configured as the VNE system
controller. The VPH-20 may access the entire 32-bit VMR address space. The
VPH-20's location in the VTE address space is user-configurable over a wide
range.

48



The optional PC interface allows the VPH-20 to comunicate with any
PC/AT-compatible machine. The PC interface is designed to provide much faster
communication between the PC and the VPH-20 than could be achieved with
conventional serial or parallel communication techniques, thereby making the
PC a handy and useful addition to a system utilizing the VPH-20.

An examination of the Programmer's Model diagram in Figure 14 shows that
there remain two resources not yet discussed. The DSACK Generator handles the
task of terminating 68020 bus cycles at the appropriate time. Its operation
is normally transparent to the user, and need not be considered in most
situations. The Expansion Bus allows for the addition of any of a number of
68020-compatible subsystems, such as A/D and data acquisition, etc. Any
resource which is "tacked on" to the system expansion bus will have its bus
cycles terminated by the DSACK generator according to values loaded into the
DSACK RAM. These values define the cycle times (wait states) necessary for
addresses within the region of the 68020 address space reserved for system
expansion (the upper 2 Gbytes).
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The following 68020 address map shows where the various resources reside

in the 68020 address space.

Hex Address Resource
---------------------------------------------------------------
0 - FFFF EPROM
---------------------------------------------------------------
4 0000 - 5 FFFF 68020 SRAM
---------------------------------------------------------------
8 0000 - 8 3FFF Four-port SRAM
------------------------------------------------------------
C 0000 - C OFFF Zoran 1 Internal Registers
------------------------------------------------------------
C 1000 - C IFFF Zoran 2 Internal Registers
------------------------------------------------------------
10 0000 - 11 FFFF I Zoran Bus I SEAM (PRAM)
---------------------------------------------------------------
14 0000 - 14 OFFF I Zoran 3 Internal Registers
---------------------------------------------------------------
14 1000 - 14 1FFF IZoran 4 Internal Registers
---------------------------------------------------------------
18 0000 - 19 FFFF I Zoran Bus 2 SRAM (PRAM)
---------------------------------------------------------------
IC 0000 1 Global Status Latch

1C 0004 1Zoran RESET Latch

20 0002 IREQUEST (Write) or
IRELINQUISH (Read) VJ bus
(byte or word access)

24 0000 1PC Interface FIFO

24 0004 IPC Interface Status/Control Register
I(longvord access)

24 0008 PC Interface Interrupt Register
(longword access)

28 0001 - 28 001B I -VHE6000 LCSR (Odd Bytes) (byte access)

28 0021 - 28 0021 I MVME6000 GCSR (Odd Bytes) (byte access)

2000 0000 DSACK SRAM Enable

6000 0000 1 DSACK SRAM Disable

8000 0000 & above I Expansion Space

A more detailed discussion of individual resources follows.
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ZORN 3BU8 1 & 2

Each Zoran bus (or VSP bus) serves two Zoran VSP chips and a ?2K
longword area of local SEAM. In addition, each VSP bus has a por- int. the
four-port memory and can access the global status latch. The following VSP
address map shows the location of resources as seen by any one of the VSP
chips.

Hex Address Resource

0000 - 7FFF I Local SRAM

2 0000 - 2 07FF I Four-port SRAM

4 0000 1 Global Status Latch

Note that VSP addresses 2 0000h - 2 OFFFh correspond exactly with 68020
addresses 8 0000h - 8 3FFFh for both VSP buses. In addition, VSP Bus 1
addresses O000h - 7FFFh correspond to 68020 addresses 10 0000h - 11 FFFFh and
VSP Bus 2 addresses 0000h - 7FFFh correspond to 68020 addresses 18 O000h - 19
FFFFh. The reason for the apparent difference in address ranges between the
68020 and the VSPs is due to their respective methods of addressing. The VSPs
can only access longword memory locations, whereas the 68020 can access
individual bytes. The 68020 then has, in effect, two more least significant
address bits than the VSPs. The difference in address ranges and their
locations is very important to the programmer. The following table should be
of assistance in converting tLe addresses of common resources between the
various buses; the programmer should thoroughly familiarize himself/herself
with this table.
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To Convert To 68020t Use Fomula:

Bus 4-port 4-port I (VSP addr. - 2 0000h)*4 + 8 0000h
Address I Address

Bus I SEAM Address I
Address I I (VSP addr.)*4 + 10 0000h

Bus 2 SEAM I Address I (VSP addr.)*4 + 18 0000h
Address I I

To Convert To VP I Us@ Formula:
66020: I I

4-port I Bus 4-portl (020 addr. - 8 0000h)/4 + 2 0000h
Address I Address I

Bus 1 Address I (020 addr. - 10 0000h)/4
Address I

Bus 2 Address (020 addr. - 18 0000h)/4
Address I I

3.1.1 VPI Internal Control

It is important to know how internal controls operate on the VPH since a
user will be coding directly to Zoran status latches, Zoran program memory
space (PRAMs I and 2), and the 4-PORT SEAM. The following information
describes address and status latch maps.

To write to DSACK SEAM:

Write to any address such that A[31..29]-[001]. This disables address
buffers and allows access to the DSACK SRAM, which is addressed with the
vector A[31,24..18].

Write to any address such that A[31..29]-[011] to disable DSACK SEAM
load mode and re-enable address buffers.

To gain/relinquish control of the VME bus:

Write to any address such that A[31..22,20..18]-0, A[21]-[1], and
A[2,1]-[01] to request mastership (byte or word access.

Relinquish the VNE bus by reading A[31o.22,20..18]-0, A[211-[1], and
A[2,11-[01] (byte or word access).

Status latch access:

The 68020 may access the status latch at address A[31..21]-0,
A(20..18]-(1111, A[2]-0. When reading the latch, the bit pattern is:
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D[7] D[6] I D[5] D[4] I D[3] D[2] I D[1] D[O]

Bits from Bits from Bits from Bits from
Zoran #4 I Zoran #3 I Zoran #2 I Zoran #1

In addition, D[27..16] reflect PC Interface status bits STAT-[11..O]
when the interface is on board.

When writing to the latch, the bit pattern is:

D[1] D[0] (All other bits are don't cares.)

Bits from
68020

The 68020 may send RESET commands to any of the Zorans by writing to
A[31..21]-0, A[20..18]-(111], A[2]-I. The bit pattern is:

D[3] I D[2] I D[1] I D[0] (All other bits
are don't cares.)

Zoran I Zoran Zoran I Zoran
#4 I #3 I #2 I #1

A '1' written to one of these bit positions causes the appropriate Zoran
to be reset and put in the SLAVE mode.

PC Interface access:

The base address for access to the PC Interface is at A[31..22,20,19]-0,
A[21,19]-[11]. In addition, A[3,2] are used to access specific resources
within the interface. All accesses to PC Interface registers are longword
accesses, but only D[15:0] are used.

To read or write the FIFO, A[3,2]-[O0].

To read the status register or write the control register, A[3,2]-[01].
(The status register may also be read by reading the status latch as described
above.)

To read or write the interrupt register, A[3,2]-[1,0].
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PC Interface registers:

Control RegisterI
T 5 S L N KLKL E E E TT

CEEfRIj DKKKj NA
• LL LNI/210 TT

E T 0OE V 1 0
V1 V E

1111311 11 641312111

STAT 0 & 1 - These are general purpose interface bits. A bit written to
STAT 0 or 1 in the Control Register appears as STAT 0 or 1 in the Status
Register at the other end of the interface.

SEND - This bit is an enable for the sending of data across the
interface. A 0 written to this bit does not disable the ability to write to
the output FIFO, but does prevent data in the output FIFO from being sent
until a 1 is written to this bit.

RECEIVE - This bit is an enable for the receiving of data across the
interface. A 0 written to this bit does not disable the ability to read data
in the FIFO, but doos prevent the FIFO from receiving additional data until a) I is written to this bit.

RE9.'T - A 1 written to this bit resets the entire interface. The FIFOs
are cleared, zeros are written to all bits of all three registers. (This
effectively clears the RESET command once it has been effected.)

CIX 0,1,2 - These bits set the rate at which output data is clocked
across the interface.

ODD*/EVEN - This bit selects odd or even parity across the interface.

NMSTIO - Setting this bit makes a high level on the incoming STAT 0 the
highest priority interrupt, thus giving the PC priority over any VHE
interrupts. (The level of the request as passed to the 68020 is set by bitA 15.)

ENINT - This is an enable for PC interrupts.

f CLRINT* - A 1 written to this bit clears all PC interrupts. The bit does
not self-clear, so a 0 must be written to this bit after interrupts have been1 cleared.

LSELO,1,2 - These bits set the level of the interrupt passed to the
68020 in response to a PC interrupt request. (A request via the STAT 0 line1 has its interrupt level set by bit 15 rather than by these three bits.)
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STOILEV - This bit determines the interrupt level passed to the 68020

(level 3 or 7) in response to a PC interrupt request on STAT 0.

Status Register

kRRRH•IPSS
FAFFE F FE AI

'X XX X X F E s *F:E£s s I T T

Si T
Y10

543210 1 1

Interrupt Mask Register

RRRR W IWWWPSS
FFFFFF FFATT•AAFEAAFERAA

XXXXFE FE ITT
T
Y10

S4 3111 0 76543210543210

3.1.2 VIK Control Sgn8a1

When performing board level diagnostics or reprogramning PALs, the
following signals may be needed. They are listed for completeness. Should
future WSMR applications call for functional design changes, these sources of

PAL signals will assist in the process. The device and signal names refer to
VPH schematic labels. The schematic is an E-size drawing (3'x4') and is
provided separately from the Final Technical Report.

4-PORT SRAM

68K PORT - /OE2 GROUNDED
/CE2 (FOR EACH BYTE) FROM 4PORTCS PAL
/WR2 FROM U139 (BUFFERED R/W)

ZORAN PORT I - /OE4 FROM ZDEC2 PAL ( /CE1 OUTPUT)
/CE4 FROM ZDEC2 PAL ( /CE2 OUTPUT)
/WR4 FROM ZDEC2 PAL ( /WRA OUTPUT)
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ZORAJ PORT 2 - /0E1 FROM ZDEC2 PAL ( JCE1 OUTPUT)
/CE1 FROM ZDEC2 PAL ( /CE2 OUTPUT)
/WRI FROM ZDEC2 PAL ( /WRA OUTPUT)

BLT64 PORT - /OE1
/CE2

/ ZORAN 1 & 2 PRA /w2

R/W - FROM ZDEC2 PAL ( /WRA OUTPUT)
/OE - FROM ZDEC2 PAL ( /OKA OUTPUT)
iCE - FROM ZDEC2 PAL ( /CE3 OUTPUT)

ft 68K EPROM

/OE & ICE (FOR EACH BYTE) FROM 68KMEMCS PAL

NOTE: PIN 1 ON EACH EPROM IS SELECTABLE VIA JHPI JUMPER TO BE EITHER +5V
OR AN UPPER ADDRESS BIT. THIS ALLOWS EITHER 128K OR 256K EPROMS TO BE USED.

68K SEAM

R/W - FROM U139 (BUFFERED R/W)
S/CE & /OE - (FOR EACH BYTE) FROM 68KMENCS PAL

ZORAN BUS ARBITRATION

Arbitration on each of the 2 Zoran buses is handled by a group of 4 PALs
- ZARB, ZDECIL, ZDEC1H, and ZDEC2. These PALs handle generation of all control
signals related to operation of the bus, including processors, memory (both
local and 4-port), and status latch. RESET is not handled by these PALs.

ZARB PAL - This PAL handles most of the bus arbitration functions.
Inputs to the PAL include Block Select signals for the Zorans and PRAM on the
bus, Bus Request signals from each Zoran, WRITE signals from each Zoran, and a
R/W signal from the 020.

$ Outputs include Bus Grant signals to each Zoran, a GEN signal which
enables the 020 to Zoran bus transceivers, ZDDIR and ZADIR signals which
control direction of the Zoran address and data bus transceivers, and 2
qualified Block Select signals which are used by other control circuitry.

ZDEC~x PALs - These PALs provide decoding and generation of control
signals to the Zorans. The ZDEC1L PAL handles the lower-numbered Zoran, the H
PAL handles the higher-numbered one. The control signals these PALs handle are
the Zoran Chip Selects, Data Strobes, Reads and Writes, and the Ready signals.

ZDEC2 PAL - This PAL handles generation of WRITE and Chip enables for
local PRAH, Chip Enables for the 4-port SRAM and PRAM, and a Status Latch
Enable.
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DSACK GENERATOR

The DSACK generator handles generation of DSACK signals to the 020.
These signals require different timing for the various different memory spaces
in the system. The DSACK generator consists of 2 PALs, DSGEN and ROMPAL, a
small SRAM, and a switch setup for setting default wait cycle lengths.

ROMPAL PAL - This PAL acts as a 9 X 4 RON containing configuration data
for 8 blocks of memory. A G output serves to disable the 020 address and data
bus buffers when the DSACK generator SEAM is being loaded. The G signal also
acts as an input to the DSGEN PAL for correct DSACK generation during SRAM
loading. A Write Enable is output to the DSACK SRAM, as is an Output Enable. 4
configuration bits (CBITO-3) are output to the DSGEN PAL.

DSGEN PAL - This PAL handles the generation of the actual DSACKO-1
signals to the 020.

3.1.3 VIK Configuration Procedures

There are a number of hardware and system level considerations to take
into account when configuring the VPH. The following sections will address
some possibly critical issues and outline the procedures for configuring the
VPH hardware. Switch and jumper settings will be treated, as will "software"
configuration of board and system functions.

3.1.3.1 System Controller Sleltion

In a VHE system, slot 1 of the backplane (usually the leftmost slot as
viewed from the front) is reserved as the system controller slot. The board
performing the system controller function drives the VTE 16 M1z system clock
line, the IACK daisy chain, and the BGO-3 daisy chains. The system controller
also provides bus arbitration for the system.

The VPH may be configured as either a standard VHE board or as the VNE
system controller. This is accomplished with JMP2 on the VPH board. This
jumper is located near the MVME6000 chip, which is the one with the cooling
tower on it. With the jumper in position 1 (shorting pins I and 2) the board
is NOT the system controller. With the jumper in position 2 (shorting pins 2
and 3) the VPH is configured as the system controller.

Configuration of the board's VNE bus arbitration module is necessary
when the VPH is configured as the system controller. A discussion of how to
do this may be found in the section "LCSR DESCRIPTION".

Please note that a board configured as the system controller may be
positioned ONLY in slot I of the VNE backplanej a VNE system may be comprised
of many boards but only the board in slot I may be a system controller.

3.1.3.2 020 NIE Sse Seleetlon

The VPI is designed so that a number of different sizes of EPROMS may be
used. The EPROUS are socketed in ZIP sockets for ease of code development.
128, 256, or 512 kbit EPROMS may be used by proper setting of J.MP1 and JNP5,
which are located near the EPROMS. The table below indicates proper jumper
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settings for each of the three EPROM sizes. Note that position 1 indicates
that the jumper is shorting pins I and 2, position 2 indicates that pins 2 and
3 are shorted.

EPROM I Jumper Position
Size
(kbits)l J4P1 I MP5

512 2 I 2I I
256 1 1 I 2

V28 I I
128 11

3.1.3.3 GM Base Address 8e1.actia

The GCSRs (Global Control and Status Registers) are a resource
associated with the VHE interface. This group of 8 registers is physically
located on the MV•E6000 chip. A detailed description of the GCSR may be found
in the section "GCSR DESCRIPTION". This section is dedicated to setting the
GCSR base address.

The VPH GCSRs, as viewed from the VHE bus, are located in the VME's
Short Supervisory Access space (AM code $2D), which utilizes 16-bit addresses.
This address space is typically partitioned in the following manner.

The upper 8 VNE address bits (A1S-AS) are used to define a Group
Address. The next four bits (A7-A4) are used to address a board within a
group. The lower 3 bits (A3-Al) are used to address a specific resource of a
board within a group. This partitioning concept isn't hard and fast, but many
boards conform to this structure. The VPH's VTE interface GCSRs are located
in this address space, and configuration is necessary to position the GCSRs at
a specific location in the short 1/0 space.

The GCSR base address, referred to above as the "group address", is
determined by the setting of S1 on the VPH board. This switch is an 8-pole
DIP switch located next to the top edge of the board. The lowest bit of this
switch corresponds to VME A8; the highest bit of this switch corresponds to
A15. A switch in the "on" position selects a zero for a given bit, the "off"
position selects a one.

EXAM-IE: To set the GCSR group address to $8Dxx, the S1 switch
settings, from highest (S1-8) to lowest (SI-1), would be:

¶ off on on on off off on off

The GCSR board address is configured through software by writing the
desired value for A7-A4 into the register at an offset of $1B from the base
address of the LCSR. (This procedure is covered in the section "LCSR
DESCRIPTION".) The lowest 3 bits (A3-Al) are decoded by the MVM6000 to
access one of the 8 registers of the GCSR.

5
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3.1.3.4 VW Slave Address Modifier Code Selection

The Address Modifier (AM) code that the VPH's VNE slave will respond to
is configured through a combination of hardware and software means. This
section deals primarily with the hardware configuration; more information on
the software configuration may be found in the section "LCSR DESCRIPTION".

Decoding of the VNE AM bits is done by both the MVHE6000 and U135 on the
VPH board. This has been done in order to allow more versatility in mapping
the VPH into the VHE address space than is allowed by the MVME6000 alone. A
discussion of the MVHE6000's AM decoding may be found in the section "LCSR
DESCRIPTION" or in the MVME6000 hardware manual. (Note that the MVME6000
always sees a zero on AM4 regardless of the level actually present on the
bus.) The following section describes the decode functionality of the U135
PAL; two versions of this PAL have been supplied to provide two different
mapping sets for the VPH VNE slave. Information contained in this and other
sections should allow creation of additional PALs to provide other slave
mappings.

The function of U135 is to look at the AM code present on the VME bus
and determine if the AM code present is correct for an access to the VPH's VW
slave. When a valid AM code is detected, an enable signal (MATCH32) is passed
on to the MVME6000 to enable the VNE slave. The MVE6000 then re-qualifies
the AM code, with AM4 presented as a zero regardless of the level on the bus.
This allows the VPH slave to respond to the VNE AM codes that the MVE6000
would normally reject.

The nMATCH" version of U135 maps the VPH slave to one of the normal VHS
AM code sets. In order to enable the slave, the AM code must have the upper
two bits low. The lower four bits are compared to the setting of the switches
on S2 to complete the decode. 52-1 through S2-4 correspond to AMD through
AM3, respectively. This allows the slave to respond to the AM codes in the
range $00 through $0F. However, within this group of AM codes, $00 through
$08 are reserved as is $OC. The MVHE6000 can not be made to respond to these
codes. In addition, the MVHE6000 is not capable of block transfers, so codes
$OB and $0F are also eliminated. The remaining four codes, their VW transfer
types, and the value that must be loaded to the MVHS6000's LCSR $0B slave
address modifier register (020 address $28000B) are sumnrized below.

AM Code I VHE Transfer Type I Register Value

$09 Extended Nonprivileged ObX1IXXOX1
Data Access

$OA Extended Nonprivileged 0bXbIlXXO1
Program Access

$OD Extended Supervisory OblXIXX0XI
Data Access

$0E Extended Supervisory 0blX1XX01X
Program Access

The "MUTCHA" version of U135 allows mapping of the VPH slave into AM
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codes $10 through $1F. These are "User Defined" address regions. Keep in
mind that since the MVME6000 always sees a zero on AM4, the AM code seen by
the MVHE6000 will be $10 less than the value actually present on the bus. In
order to ensure response from the MVNE6000, it is recoumended that only codes

$19, $1A, $1D, and $1E be used. It is possible that other AM codes within
this block would be acceptable to the HVME6000, but this would have to be
established through experimentation; it is easier just to utilize one of the
four prescribed patterns. These AM codes and the Address Modifier Register
values are summarized below. Note that all VHE transfer types are actually
"User Defined" - the transfer type shown is the type assumed by the ZVME6000.

AM Code I Transfer Type I Register Value

$19 Extended Nonprivileged 0bX11XXOX1
Data Access

$1A Extended Nonprivileged ObX11XXO1X
Program Access

$1D Extended Supervisory 0bIX1XXOX1
Data Access

$1E Extended Supervisory 0b bX1XXOIX
I Program Access

Other mappings are certainly possible. DO NOT ATTEMPT TO MAP THE VPH
SLAVE INTO ANY 16- OR 24-BIT ADDRESS SPACES! The VPH's address decoders
require a full 32-bit address even though most of its resources are located
within the lover 24-bit region. An attempt at mapping the slave into a 16- or
24-bit address space will likely result in system failure, since the upper
address bits may not appear as expected. (One would expect the upper bits to
be a sign extension of the 16- or 24-bit address, which for most 24-bit
accesses would work. But if the upper bits float high, or if the sign bit is
a "1", accesses would fail.)

New design files for U135 could be created easily to make the VPH slave
respond to any of a group of AM codes. As an example, a possible alternate
design file is shown below which would allow the slave to respond to any
combination of AN codes $19, $1A, $1D, or $1E. (The appropriate value loaded
to the slave address modifier register would depend upon the selected codes;
ObIlI1XI0l would work for any selected combination for this example.) The
function of S2 is shown below.

S2-1 Enable accesses on AM code $19 when "ON"
S2-2 Enable accesses on AM code $1A when "ON"
82-3 Enable accesses on AN code $1D when "ON"
S2-4 Enable accesses on AN code $1K when "ON"

For instance, to allow slave access on codes $1D or $1E, turn switches 1
& 2 off, switches 3 & 4 on. The following PAL file for the MATCH PAL is vital
to future changes to the VPH. It is included (verbatim) for complete
understanding.

f
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;PA-ASM DESIGN DESCRIPTION

; ------------------- Declaration Sesmen1t -

TITLE MATCH32 AND MATCHGCSR DECODER PAL

PATTERN MATCHB. PDS

REVISION 00 a
AUTHOR LARRY HALL

COMPANY SPACE TECH CORP.

DATE 07131192
a

CHIP MATCH PAL22VIO

THIS PAL GENERATES TWO ENABLE SIGNALS WHICH ARE

USED BY THE ME6000 TO DETERMINE IF AN ADDRESS

ON THE VNE BUS BELONS TO AN ON-BOARD RESOURCE.

IT ALSO PERFORMS 020 BUS ARBITRATION BETWEEN THE

020 AND THE 6000, AND PROVIDES A 10 IEZ CLOCK FOR

THE 6000 BY DIVIDING THE 20 IZ CLOCK BY TWO.

/MATGCSR INDICATES THAT THE 6000'S GCSR IS BEING

ACCESSED. IMATCH32 INDICATES THAT THE ViE IS

ACCESSING THE VPH'S 32-BIT ADDRESS SPACE. THE

/MATCH INPUT IS THE OUTPUT FROM A 688 COMPARATOR

WHICH COMPARES THE A08-A15 BITS TO A VALUE SET

ON AN 8-BIT DIPSUITCH WHICH DEFINES THE OGROUP

ADDRESS" OF THE GCSR IN THE VIE SHORT ADDRESS

SPACE. CIX IS THE 20NEZ CLOCK. THE BO-B3 INPUTS

ARE FROM A DIPSWITCH USED TO DEFINE THE AN CODE

USED TO ACCESS THE VPH FROM THE VM9. THIS AN CODE

IS REQUIRED TO HAVE BIT 5 LOW AND BIT 4 HIGH. THE

ACCEPTABLE AN CODES ARE SUMMARIZED IN THE TABLE
BELOW. ALONG WITH THE VNE BUS SPEC'S DEFINITION OF

THE AN CODE SEEN BY THE NVME6000 CHIP.

AM CODE TRANSFER TYPE

$19 EXTENDED NOUPRIVILEGED DATA ACCESS

$1A EXTENDED NOIPRIVILEGED PROGRAN ACCESS

S$1D EXTENDED SUPERVISORY DATA ACCESS

$12 EXTENDED SUPERVISORY PROGRAM ACCESS

a /DGACK IS USED BOTH AS THE MBGACK INPUT TO THE 020

AND AS THE /PBG INPUT TO THE 6000. /BR IS THE /BR

a INPUT TO THE 020. /DSACKO-1 ARE THE 020 /DSACKO-1
LINES. /BG IS FROM THE 020. IPBR IS FROM THE 6000.

.------------------- PIN Declarations---------------
PIN 1 CIZ INPUT

PIN 2 AND0 INPUT

PIN 3 AlN INPUT

PIN 4 AM2 INPUT

FIN 5 AM3 INPUT
PIN 6 A54 INPU

PIN 7 AMI
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PIN 8 lAS -INPUT

PIN 9 /BO INPUT

PIN 10 I3I INPUT

PIN 11 /B2 INPUT

PIN 12 CND
PIN 13 /B3 INPUT
PIN 14 /MATCH INPUT

PIN 15 /N&TCCSR COMBINATORIAL ; OUTPUT

PIN 16 /BGACK REGISTERED ; OUTPUT
PIN 17 /BR REGISTERED ; OUTPUT
PIN 18 /IATCH32 COMBINATORIAL ; OUTPUT

PIN 19 CLK10 RECISTERED ; OUTPUT
PIN 20 /PBR ; INPUT

PIN 21 /DSACK1 ; INPUT
PIN 22 IDSACKO ; INPUT
PIN 23 /BG ; INPUT
PIN 24 VCC

S----------------------------------- Boolean Equation Segment ------

EQUATIONS

MATGCSR - AN5 * /AN4 * AM3 * AM2 * /mhi * Aw0 * MATCH

HATCH32 - /A5 * lAW * A3* AM2 * /Ami * ANO * B0
+ /AN5 * /AM4 * AM3 * /AN2 * AMI * /ANO * BI

+ /AM5 * IN4 * AM3 * AM2 * /M * AMO * B2
+ /AM5 * /A4A * *A2 * ANI * /AH0 * B3

BR - PER *D/BSACO

BGACK a PRE, BR * /AS /DSACK0 /DSACKI
+ BEGACK * AS

+ BGhCK * DSACKO
+ BACK * DSACKI

+ BGACK * PBR

CLKIO - /CLK10

----------------------------------- -Simalation Segment
SIMULATION

S-------------------------------------------------------------------

33.1.3.5 I•ita1ljzatiam Cmaideratimm

It is expected that the need will exist to develop a wide range of
application code for the VPH in the future. Since the board is not supplied
with any type of an operating system, the system programmer developing code
for the VPH needs to be aware of proper resource initialization procedures for
various VPH resources. Such initializations are necessary at power-up, and
possibly at any other time that the VPH is "reset" or reconfigured as required

by some process. The following section discusses these considerations.
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At power-up or other reset, the VPH's 68020 will begin execution at

address 0 in EPROM. The initialization sequence is the standard sequence as
described in the 68020 User's Manual; the first few locations in EPROM contain
initial stack pointers, the execution start address, etc.

It is recommended that the boot sequence for the 020 load the SFC and
DFC registers with $3, as this is the function code used for accesses to VME
via the MOVES instruction.

If the PC interface is to be used, the control registers for the
interface must be set up appropriately. See sections on the PC interface for
more information.

When the VPH wakes up, the DWB bit at 020 address $200002 will be
asserted. This causes the VPH to request the VNE bus and, once granted, will
not release until the DWB bit is negated. This should be done early in the
boot sequence so as not to interfere with other boards' ability to complete
their boot sequences. Negating the DWB bit may be accomplished by doing a
byte read of location $200002 in VPH local memory space.

Proper initialization of Local and Global Status Registers will be
required before the VPH's VE slave and/or master will function properly.
Information on the MVME6000's LCSR and GCSR may be found elsewhere, either in
this document or in the MVME6000 User's Manual. There is no hard and fast
rule as to how to set up the MVME6000; the necessary initialization will
depend upon the application and overall system configuration, and must be
determined by the system programmer.

One thing that will need to be done in nearly any situation at boot is
to clear the BRDFAIL bit in the System Controller Configuration Register in
the LCSR. If this is not done, the SYSPAIL line on the VMEbus will be
asserted, which will bring the system to its knees before it ever gets up and
running. This negation may be accomplished by a byte write of $4 to 020
address $280001.

It is good practice to clear the Zoran interrupts, reset the Zorans, and
clear the 020's status bits at boot. This may be accomplished by writing zero
to 020 longword location $1C0000 and $F to $1C0004.

Also necessary at boot is loading configuration data to a couple of
locations in the DSACK SRAM. These locations are for accesses to the MVH96000
and/or VNE bus, and the PC interface (if used). The following code segment
will accomplish the DSACK SRAM initialization.

MOVEA.L #$20000000,AO ;DSACK SRAM ENABLE ADDRESS
MOVEA.L #$60000000,A1 ;DSACK SRAM DISABLE ADDRESS
MOVEA.L #$240000,A2 ;PC INTERFACE BASE ADDRESS
MOVEA.L #$280000,A3 ;MVME6000 REGISTER SET BASE ADDRESS
MDVE.L #0,(A0) jENABLE DSACK SRAM
MOVE.L #$4,(A2) ;WRITE CONFIGURATION NYBBLE TO SRAM
MOVE.L #$1,(A3) SWRITE CONFIGURATION RUBLE TO SRAM
MOVE.L #0,(AI) ;DISABLE DSACK SRAM
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I 3.1.4 VI! Installation and Setup Procedure.

The following procedure describes the installation and setup of the VPH
and SBC. It shall be used for a cold start sequence (e.g. the unit directly
out of the box). The instructions are also useful when the board settings of
either the VPH or the SBC have been changed. Before any of the following
steps are taken, you should read and study the VPH User Manual, the MVME6000

( manual, and the SBC Manual for the 135 board. A thorough understanding of the
address spaces of each board will be necessary if hardware or software
modifications are to be made. This will help prevent inadvertent address
space overlap.

MODE 1: SBC system controller/VPH non-system controller

1. Set the VPH switches as follows
sl 1-8 all off (address map)
s2 1-4 off on on off (AM code mods)
s3 1-4 on off of off (default DSACK wait

states, used in
expansion bus)

1 2. Set VPH jumpers as follows
JHPR1 (set for EPROM size)
JMPR2 short 1 and 2 (VPH non-system mode)
JMPR3 (set for # of Zoran ext

memory access wait states)
JMPR4 (set for # of Zoran ext

memory access wait states)
JMPR5 (set for EPROM size)

3. Set the SBC switches as follows
s3 1-8 #4 on, all others off
s4 1-10 4, 8, 9 on, all others off

You are now configured for the SBC to operate as system controller.
Plug it in slot #I (left most slot of chassis). 135 Dbug will run at its base
DRAM address. The SBC is configured to operate with 32-bit address and 32-bit
data.

3.1.5 Typical VPR Operation

The following sections describe the typical execution sequence that is
recommended for the VPH 325 chips. The current set of application code has
adhered to these procedures. They serve to provide a uniform basis for future

£ coding practices and will maintain better documentation if consistency is
applied to the programming methodology.

The major programming convention is necessary to ensure that the four
325 chips initiate activity simultaneously. In this manner the code executed
by each chip will start at the same point in the programs and end at the same
point in the programs. Zorans describe execution across multiple chips as

I waves. Hence, synchronization of the wave processing is desired. We say that
a chip or a set of chips completes a wave when each and every chip has
executed its code segment relative to that wave.
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Synchronization is depicted in Figure 15. Here, a starting routine is
executed first. In the current suite of code, a routine called STARTUP.ASH is
used for most of the applications. It is a generic routine for any of Zoran's
application libraries as well. Startup initializes the status bits in the
status latch so that the 68020 or 020 can synchronize Zorans. In startup the
Zorans do not modify the status bits. In a polling loop, the 020 will modify
these bits when it is ready to initiate Zoran starts simultaneously.

Once the 020 sets the status bits accordingly, the 325s begin wave I
processing. Wave 1 processing consists of any routines a user wants the 325s
to execute such as convolution or FFT. When every 325 that is processing has
completed their tasks, they individually set their status latch bits. Now the
020 has been monitoring all bits in a poll status loop. Upon detecting that
each and every 325 has completed wave 1 tasks, the 020 modifies the status
bits to allow the 325s to begin wave 2 processing.

Figure 15 depicts only two waves, but the concept is not limited to only
two waves. As many waves or routines as are desired _-ay be used in this
method. Further, the waves may be any routines desired by the user. They do
not have to be the same code.

Another important programming convention is the consistent usage of the
stack frames as depicted in Figure 16. The example discussed assumes that two
325s are sharing the same bus, probably 325s I and 2 using PRAM 1. The
convention should be followed no matter how many 325s are used or how many 325
buses. The two key 325 registers are the stack pointer (SP) and the program
counter (PC) of each 325. To synchronize execution across multiple 3259, it
will be necessary to start them with correct program starting addresses.
Those are popped off the stacks. A stack frame will then consist of addresses
for important locations like the program starting addresses, locations of
parameters to pass into and out of the routine or subroutine.

Those addresses are found in the MAP file of the code relevant to the
current application. They are generated by the Zoran 325 assembler process.
Each address must be linked into the program, so a specific procedure is
followed. The Zoran Assembler Manual explains the method. The current
application library has adhered to this procedure in every program.

The typical execution begins with each 325 with the correct PC and SP
value in them. Note that the SP points to the first location below the
starting location. Upon initiation of execution, the SP is incremented first
and then the value is popped off the stack. The 4-port serves as the data
space for each 325 which the stack pointers I and 2 (or as many as you need)
point to. The PRAM contains the actual routine used in the current
application. The code should always start at location 0000 as this makes
assembly easier. Also, keep sufficient space between each stack pointer in
the PRAM so that the 325s do not inadvertently write into your stack (as might
occur with an interrupt).
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A typical stack frame is shown on the left of Figure 16. Two routines
are assumed, each with a synchronization call and list of parameters. The
last routine will also execute a STC provided FINISH routine. FINISH cleans
up the status latch bits to indicate to the 020 that the wave(s) by all 325B
have been executed. The 020 then uploads the results into the correct 4-port
space. This activity is shown in Figure 17. Again for consistency, all
current programs follow this activity flow. Near the bottom of the chart is a
decision box. If more routines are to be executed, the resultant path depends
on the routines invoked. Typically, the path continues up to set 325 mode
bits.

3.1.5.1 System Bootup

To bring up the VPH system with the 68020 monitor program, just turn on
the power. If the VPH stops responding for some reason, it can be reset with
the reset switch found on the board itself.

I 3.1.5.2 Iunitialization

If the to monitor program with a PC is being used, it is important to
set up its status register manually. Then the Zoran interrupts must be
cleared and the Zorans must be reset again. The steps for this are as
follows. Keystrokes are shown in square braces.

1. set the port to the status register [P 362 <CR>]
2. clear the interface by writing ones [W FFFF <CR>]
3. set up the correct status values [W 186C <CR>]
4. set the port back to the FIFOs [P 360 <CR>]
5. clear the interrupts with a poke of 0 to address 1COOO

[W 12 <CR> W 0 <CR> W IC <CR> W 0 <CR> W 0 <CR>]
6. reset the Zorans with a poke of F to address 1C0004

(W 12 <CR> W 4 <CR> W IC <CR> W F <CR> W 0 <CR>]

If a script is being used, all of these operations can be conveniently
~ performed by a single call to the Init() function.

3.1.5.3 Transfer Program to Zoran Program RAM (PRAh)

If the io monitor program is being used, programs can be downloaded with
the Download command. As an example, assume that the file fft2d32.s is being
downloaded to PRAM1 and PRAM2, which start at addresses 100000 and 180000.
The command sequence would be

(D fft2d?2.,i <CR> 100000 <CR> D fft2d32.s <CR> 180000]

If a script is being used, programs can be downloaded with a call to the
Download function. For the example, the call would be

I Download("fft2d32.s", Oxl00000);
Download("fft2d32.es, Ox180000);
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Macro definitions can be used to simplify this to

#define PRAMI Ox100000
#define PRAM2 0x180000
Download("fft2d32.s", PRAMI);
Download("fft2d32.s", PRAM2);

3.1.5.4 Data Tran•,fer tolfrem Four Port Humozy

If the io monitor program is being used, data files can be downloaded
with the Download command as well. These files will generally be ASCII
hexadecimal files. If the Zoran or Motorola assemblers are used to create
data files to go into the four port memory, an address offset of zero is used
instead of the values here. This is because the S format files already
contain the correct addresses for each record. This was not the case for the
program files being transferred to PRAM because address zero in the PRAM
appears at 100000 or 180000 in the 68020 address space. Here is an example of
downloading a data file to the four port, which starts at address 80000.

(D fft2d32.dat <CR> 80000 <CE>]

With a script, this would be performed by a call to the Download
function as follows.

#define FOUR PORT OxSOOO0
Download("ffT2d32.dat", FOURPORT);

For uploading results, the Upload command is used. This command
requires a size in longwords and produces an ASCII hexadecimal file as output.
From the monitor, the command to upload the 2048 (800 hexadecimal) longwords
of results of the fft2d32 program from four port would be as follows.

[U 80000 <CR> 800 <CR> fft2d32.out <CR>]

With a script, this would be performed by a call to the Upload function
as follows.

Upload(FOURPORT, 2048, "fft2d32.out");

3.1.5.5 getting the Zoran Ragieters

The Zoran internal registers can be accessed from the 68020. Each Zoran
is mapped into a different set of memory locations. These are documented in
the hardware memory map, but will be repeated here for convenience. Zoran I
is at COOOO, Zoran 2 is at CI000, Zoran 3 is at 140000, and Zoran 4 is at
141000. The register offsets from these starting addresses are listed in the
Zoran Engineering Data Manual. These offsets must be shifted left two bits to
convert them from addresses of longwords to addresses of bytes. Some of the
more important resulting offsets are the stack pointer at 414, the program
counter at 404, and the mode register at 408. A specific Zoran register can
be accessed by adding the offset to the starting address. For examle, the
Zoran 2 stack pointer is at address C1414. To write the value 33 to that
stack pointer from the monitor would require the following commands,
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[W 12 <CR> W 1414 <CR> W C <CR> W 33 <CR> W 0 <CR>]

To perform the same operation from a script would require a call to the
Poke function with appropriate parameters.

#define ZORAN2 0xcl00O
#define SP OFFSET 0x414
Poke(ZORAN2 + SPOFFSET, 0x33);

Similar methods are used to write to the other registers. Writing to
the PC causes the Zoran to begin executing at the address written. The mode
register has many bits which should not be altered. The initial state is
acceptable. If speed of execution is important, the number of wait states for
memory access can be reduced from one to zero by writing the appropriate
value. This is performed from a script as follows.

#define MODE OFFSET 0x408

Poke(ZORAN2 + MODEOFFSET, 0x70f251);

3.1.5.6 Ae•eesing the Status Lateh

The 68020 can modify its status latch values by writing to address
CO000. The status latch bits are the bottom two. The 68020 can interrupt

the Zorans by setting higher bits in the same location, so only the bottom two
bits should be set when modifying the status latch. Commands from the monitor
to set the upper status bit (status value 2) would be as follows.

[W 12 <CR> W 0 <CR> W 1C <CR> W 2 <CR> W 0]

From a script file, the same operation would be performed with a call to
the Poke function.

#define STATUS LATCH 0xlc0000
Poke(STATUS LATCH, 0x2);

The 68020 can read back the status latch, but it will not contain the
value that was written. Instead it will contain the values written by the
Zorans in the bottom byte. To read it from the monitor would require the
following commands.

[W 11 <CR> W 0 <CR> W IC <CR> R R]

To read it from a script program and assign its value to a variable
would require a call to the Peek function.

long value;
value - Peek(STATUS LATCH);

All processors write to the bottom two bits of the status register.
When they read from the status register, they see the values written by the
other processors. The 68020 sawe the values in the order Zoran4 bite, Zor=3
bite, Zoran2 bits, Zore• l bits, listed from most signipleat to least
aiwificant. Each Zoran sees the values in an order that is symetrical with
respect to itself and the bus it is on. Most importantly, the 68020 bits are
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seen at the same place by each Zoran. This allows more convenient coding for
communication. The order is opposite bus high Zoran, opposite bus low Zoran,
same bus other and Zoran, 68020 bits.

3.1.6 VP! Scripts

The VPH is delivered with a set of applications programs found in the
appendices. Some of these programs have been collected into a type of "main"
program called "scripts". A script is an organized collection of routines and
subroutines that eliminate many of the keystrokes needed when a Command
processor like the io monitor used by STC to demonstrate the VPH is invoked.
A script assembles all of the necessary commands into a single command entry
which is typically the filename of the application itself. For instance, if
an FFT program were to be executed, several commands to the command processor
are necessary. They are the data space setup commands, the status latch setup
commands for the 68020 and the 325s, download commands and upload commands for
the results. Six scripts have been provided with the VPH, including 2DFFTs
for 8x8, 16x16, 32x32, a 1k FFT, real and complex convolution and correlation,
and coordinate conversion routines.

3*2 CPR lhntionsa Unite

From a programmer's perspective (Figure 18), the CPH consists of two
multipliers and two ALUs connected to cache and auxiliary memory via a
crossbar switch. It is important to note that the crossbar switch is fully
programmable in one clock cycle. Also, it is a fully parallel gateway. All
selected paths are available in one clock cycle. Furthermore, the crossbar
has an internal register file which is available to any other resource.

The address generation is performed by a separate board called the
address generator board. Details of this board are described elsewhere. The
address generator board contains a set of crossbars also. Microprogramming
the CPH consists of using the 784-bit microword depicted in the appendix. All
fields are simultalieously available. Hence, the CPR is a true Very Long
Instruction Word machine (VLIW). Because the multipliers are faster than the
memory chips, one s:age of pipelining is added to all data paths and is shown
in the figure. M! -rowords are emitted as two phases of 768/2 or 384-bits.
The machine definition file in the appendix for the CPH shows which fields are
active in each phrse. When a field is active in both phases, the ASSIGN
statement is repea'ed for those fields except that the physical bits differ
per phase.
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I
3.2.1 Processor

The processor board is the numerical engine of the CPH architecture.
Each board contains 2 BIT 2110 ALU devices and 2 BIT 2120 Multiplier devices.
They are connected to other resources via nine xbar devices. Nine are used so
that parity can be generated. Otherwise the 32-bit space would only require 8
xbars on the processor board. The organization is shown in Figure 18. It is
useful as a programmer's model because it details the port assignments for
each xbar and the microinstruction fields relevant to each port.

From this figure we see that the architecture is a two phase pipelined
organization. All resources have the capability to pipe two levels of data.
This was done so that the slower memory devices can conceptually keep up with
the faster 2120s on the processor board. It is important to note that the
ALUs do not have on-chip registers. So an external register file is provided
which is embedded in the XBAR chips as a 64 word file arranged in an 8x8
array. The register file is general enough to allow FIFO, shift left and
right operations to them. These are called register mode operations fully
described in the xbar section of this report.

The processor board contains a writable control store for the control
points on the board. Twelve microprogram memory modules are used. They are
partitioned into real and imaginary fields and are signified by "HEM72" labels
on the schematic. The WCS instructions are chosen so that complex arithmetic
operations are facilitated by their respective real and imaginary parts. The
WCS is downloaded from the lOP board. A WCS allows dynamic microprogramming
so that multiple microroutines can be executed without excessive host
interaction. The modules have been designed, fabricated and tested. A spare
module also is being supplied. These modules are also identical to the WCS
modules in the address generator board where the EVA master control store
resides. The WCS essentially supports reconfigurability of the ALUS and
multipliers by microprogram control. Some of the options are depicted in
Figure 19. Those shown often are useful for inner and outer product
operations on matrices.

The current status of the processor board design will require adding
error FIFO flags (only if arithmetic status conditions are needed) and ECL
clock distribution circuitry to the board. All other data and control paths
have been assigned and entered into the schematic. Should a slower clock be
used, ECL logic can then be replaced with CMOS clock distribution nets. The
design will become much simpler in the process. Also, the high speed 10 or
HSIO control circuitry needs to be added to the schematic.

The original Phase I design for this board relied on the availability of
and around carries being generated by the ALUs and multipliers. End around
carries are necessary for two's complement arithmetic. However, when the
final data specifications were completed by BIT, this signal was not provided.
Hence, cascading these 32-bit chips via 32-bit boards became impossible. The
current design then doubled the number of engines per board so that each board
could behave as a 32-, 64- or 128-bit board under microprogram control. In
this way, reasonable emulation speeds could be maintained and across-a-bus
delays are eliminated.
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I
The current processor board design connects the xbars to the cache

memory via the CPR backplane as shown in the CPR Physical Layout in Figure 20.
This figure is important when maximum execution speed is desirable in the
microprograms. The slowest path will always be the one which takes the data
off the board. Hence, when writing new microcode, the user should realize asshown in the figure that the cache accesses will take place across the CPH
backplane. The same is true for the 10 path obviously.

1 3.2.2 Calhe Nemmry

I The cache memory board is a versatile module for the CPH. It is
designed to be cascaded so that memory space is limited only by the physical
dimensions of the mainframe space. This cache can also be viewed as the main
memory space of the EVA. It uses cache memory modules which have been
designed, fabricated and fully tested. The board itself which houses the
separate modules has not been fabricated. Each module is a SIM or strip of
discrete memory chips mounted on a small circuit board as shown in Figure 21.
Fabricating the SIs8 this way allowed us to design very dense cache memory
boards.

The individual memory cells of the modules uses a 3-port cell scheme as
depicted in Figure 22. Here, we see that data ports A and B are output ports,while data port C is an input port. This is important to remember when
microcoding the CPH because certain ports are only read and others are only
write ports. The fields in the microinstruction reflect these conventions
also. Note that the clock timing is a 4-phase clock with two phase 180
degrees out of phase and the other two clocks in quadrature with these two

* phases. A 4-phase clock scheme was chosen to maximize throughput of the
modules. The cache memory bus timing also follows in Figure 23. Bus timing
evaluation is necessary to complete the backplane clock distribution design.

I The cache memory board is currently in design and its schematic is
nearly 75% completed. Its RAM timing has been fully specified by Figure 24.
Here, it is important to note that the 4-phase clock is still needed on the
board itself. Also, when future microcoding starts, the code should observe
the timing delays to be encountered by the clocks. For example, the last line
shows that the "A DATA OUT" signal will generate the most significant data
word first followed by the least significant data word. When microcoding the
cache accesses, the coder should realize this multiplexing of the HS and LS
words.

The cache memory board can be configured as follows:

Memory block - 16k X 36 (or 64J X 36) unit of memory. A jumper should
reside on the board to set the size of each of the two blocks resident on the
board. Pinouts of Cache Memory Modules are identical for both possible sizes
- the only difference is that the two MSBs of the address are not used on the
16k modules.

Memwory bank - a 256K deep region of memory. There may be a maximum of
16 banks each of Cache and Auxiliary memory.

I
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Both blocks of memory on each cache board must be configured as either

cache or Auxiliary.

Address ports -

Port A - Cache Complex Read Port
Port B - Cache Complex Read Port
Port C - Cache Real Write Port
Port D - Cache Imaginary Write Port
Port E - Auxiliary Memory Port
Port F - H.S.I.O. Port

Data ports -

Port A - Cache Real Read Port A - Cache Imaginary Read
Port B - Cache Real Read Port C - Cache Imaginary Read

Port C - Cache Real Write

Port D - Cache Imaginary Write

Port E - Aux. Real Read Port E - Aux. Imaginary Read

Port P - ESIO Real (R/W) Port F - HSIO Imaginary (R/W)

Address port pairs A & C and B & D are time-multiplexed (they are
physically the same backplane pins). During clock phase 0, ports C and D are
active; during clock phase I, ports A and B are active.

In addition, time multiplexing exists on the E address port. During
phase 0, address port E carries bank addresses. Bits 0-3 are the cache bank
address and bits 4-7 are the aux. bank address. During phase 1, address port
E carries an aux. memory address.

The 8-bit configuration address, which is used to address each cache
board uniquely during the system configuration process, may appear on either
address port A, B, C, or D. This is your choice. The configuration address
of each board is set for each board on a dipswitch.

In addition to bank address and selecting either cache or aux. memory,
configuration data must include whether a block of memory is the most or least
significant word. Also, the offset into the bank will be required for each
block.

Separate decoding circuitry will be required for cache, Auxiliary, and
HSIO addresses. Because the limitation exists that a given bank of memory
may not be accessed -y the processor and the lOP at the sams time, if a valid
cache or &ux. bank address is presented to the board, the processor addresses
are captured by the first level of decode circuitry, regardless of whether a

Svalid HSIO address is present or not.

There are 4 bits of microcode resident on each board for each of the
two clock phases. These bits are active /WRCAr, /WRCAi, /WRAUXr, and /WRAUXi
during phase 0, and /RDA, /RDB, /RDEr, and /RDEi during phase 1.
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3.2.3 Address emerataor (AG)

A considerable effort was expended to enhance many of the address
generator's circuits. High speed ALU and memory chips finally arrived by
March 1990, but development of the required "glue logic" chips lagged behind.
The address generator requires 16-bit wide counters and adders capable of a 40
MHz clock rate. These parts were unavailable in 1990. Many times, PALs could
have been used to implement functions not available as standard devices. New
larger and higher speed PAL type of devices have only recently been developed.
Unfortunately, they are still too slow. The smaller PAL devices are capable
of high speed, however, it is necessary to cascade multiple devices together.
The combined delay was too great. The devices large enough to fit these
functions on a single chip were too slow.

Several companies had large high speed PAL devices under development
during 1990. Cypress, AMD, Plus Logic, and Altera released new devices that
year. Some of these new parts are now fast enough to solve many of the speed
problems. Also, Integrated Device Technology plans to make available many
standard logic functions in a new high speed BiCMOS technology.

The address generator is designed to support multiple matrix addressing
tasks directly in hardware. The purpose of the AG board is to reduce the
overhead normally incurred by computing complex addresses in software. To
keep the overhead down, 4 2-D counters are available on the board to assist
memory access in a matrix. A dataword can be accessed randomly, in a row,
down a column, down a diagonal, down a subdiagonal and all of the above in the
opposite direction. The 2-D counter circuits are depicted in Figure 25.

The 2-D counters are designed with IDT7381L20 high speed adders. These
adders were to be found in a Plus Logic 2040 FPGA but the 2040 did not become
available during this Phase II effort. The IDT7217L25 multipliers are used
for address offset computations executed directly in hardware. This hardware
address generation method reduces the overhead of complex address generation
to a minimum. Although the AMD 29540 is shown in the figure, the device has
since been deleted from AMD inventory with no second sourcing. Should future
availability occur, then these devices should be incorporated in the position
shown in this figure. A discrete logic implementation of this device was
executed. Over 40 16-pin devices are needed. Hence, the FFT hardware address
generation feature of the CPH had to be deleted.

It is done by preloading the counters with the appropriate starting
address and counting up or down as required. Control is accomplished with
fields in the microinstruction such as 2-D counters #1, #2, #3, and #4. The
microorders are fully parallel across the 4 counters. As a result, 4
concurrent addresses can be generated and sent anywhere in the CPH by virtue
of the crossbar switch. The block diagram of the AG board follows in Figure
26. The AG board houses the microprogram control unit for the CPH. Here, one
finds the microsequencer control for program control. Another microprogram
memory resides on the processor board but this is simply writable control
store. Once a program is downloaded to the processor board, execution of
microinstructions on that board follows sequentially.
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i 3.2.3.1 PR Address generator Board Download

Recall that the address generator board houses the central control store
of the EVA. To download EVA microprograms from the I/0 Processor (lOP) to the
Address Generator Board (AG) the code running on the CPH system must request a
program download by pulling the Download Request (DLRQST) line loy on the
high-speed 1/0 bus (USIOB). This not only requests the lOP to download the
program, it also causes the microsequencer to push the program counter onto
the stack and to halt. The status of all counters, RAM (other than program
RAM), and other circuits are preserved at that moment. The lOP then downloads
the program to the program RAM as follows:

The lOP places the Program RAM address onto the HSIOB I/0 address lines.
Each board in the system decodes the address and the targeted board latches
the address.

3.2.4 110 Processor Purpose and Pastures

The IOP Processor (lOP) serves as the comnunication link between the CPH
system via the High-Speed 1/0 (HSIO) bus, an IBM-PC via the I/0 (PCIO) port,
and the VNE VPH processor via the Serial I/0 (SIO) port. The SIO port
communicates directly to a buffer/conmunications board residing in a VNE
chassis, so optionally this port can serve as the host rather than an IBM-PC
if desired.

The microcontroller on-board the IOP is entirely interrupt driven. In
response to an interrupt received from one of the I/0 interfaces, it executes
the interrupt service routine pointed to by its internal interrupt vector
table. In the case of an interrupt from the host, this routine simply reads a
command from the interface and executes it. This will generally be a command
to transfer a block of data from/to the host. This is done by initializing
one of two data transfer counters, initializing the appropriate interface
control registers, and then setting the GO control bit on the "sending"
interface's control register. The control logic for each interface handles
the necessary handshaking to complete the data transfer, including monitoring
flags and generating read and write signals, all independent of
microcontroller intervention. Upon completion of the transfer, the "sending"
interface generates an interrupt, and the microcontroller performs the
necessary resource allocation cleanup.

3.2.4.1 lOP Control signals

Addressing the control registers is accomplished by setting the
microcode control address field to the address indicated below in each
register description. Bits in the microcode data field may be either data
write enable bits or data bits, as defined in each control register
description. In order to modify a bit in a control register, the control bit
associated with the date bit must be set LOW, the data bit(s) must be set to
the desired value, and the correct address must be present. When all this
occurs along with the Control Register Write (CRW) microcode bit set low, the
change will occur.

I
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RESOURCE ALLOCATION ADDRESS 0
PAL FILES: CTRL8.PDS
PAL DEVICE: PALCE26VI2

This register indicates what resources are currently in use and which
are available. These bits are undefined at power-up or after a reset and must
therefore be initialized prior to operation. The resources are:

MICROCODE BITS
control data

19 7 Counter A
18 6 Counter B
17 5 High-Speed I/O Interface Receive
16 4 High-Speed 110 Interface Send
15 3 Serial I/O Interface Receive
14 2 Serial 110 Interface Send
13 1 IBM-PC Interface Receive
12 0 IBM-PC Interface Send

Each software routine which uses a resource first checks its
availability. Once the routine has determined that the resource is available
by detecting a HIGH in the appropriate bit, it sets that bit LOW to indicate
that it is in use. All interrupts must be disabled during this portion of the
code. The bits are read using the microsequencer flag (condition) input.

IBM-PC INTERFACE CONTROL ADDRESS I
PAL FILES:
PAL DEVICE:

This register contains all IBM-PC receiver interface controls, controls
which are common to both the IBM-PC transmit and receiver interfaces, and
controls that are initialized during reset and normally remain unchanged
afterwards. Upon reset all outputs are set HIGH.

MICROCODE BITS
control data

17 8 RECEIVE - Allows sending interface to
send.

16 7 SOURCE - Selects the source interface
when receiving data - LOW
is SIO, HIGH is HSIO

15 6 CLRINT - Interrupts cleared when LOW
14 5 ENINT - Interrupts enabled when HIGH
13 4 ODD/EVEN - Parity ODD when LOW
13 3,2,1 CLK 2,CLK 1,CLK 0

CLK 2 CLK 1 CLK 0
0 0 0 500 KHz
0 0 1 1 MHz
0 1 0 2 MHz
0 1 1 4 MHz
1 0 0 8 MHz
1 0 1 16 MHz
1 1 0 16 MHz
1 1 1 500 KHz
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12 0 RESET - Reset the IBM-PC interface

when LOW

IBM-PC INTERFACE TRANSMIT CONTROL ADDRESS 2
PAL FILES:
PAL DEVICE:

This register controls the operation of the IBM-PC transmit interface.
Upon power-up reset or IBM-PC interface reset all bits are set HIGH.

MICROCODE BITS
control data

18 7 PMRSTATI - STATI receive interrupt
mask

17 6 PMRSTATO - STATO receive interrupt
mask

16 5 GO - Enables sending data when LOW
15 4 PSELAB - Selects which counter is

assigned to the IBM-PC interface for
sending data - LOW is counter A,
HIGH is counter B

14 3,2 REAL, IMAG
REAL IMAG

0 0 64-bit, low word first
0 i 32-bit, imaginary data
1 0 32-bit, real data
1 1 64-bit, high word first

13 1 XSTAT1 - Transmit status bit 1
12 0 XSTATO - Transmit status bit 0

IBM-PC INTERFACE INTERRUPT MASK ADDRESS 3
PAL FILES:
PAL DEVICE:

The interrupt is masked when the bit is set HIGH and enabled when set
LOW. Upon power-up reset or IBM-PC interface reset all bits are set HIGH.

MICROCODE BITS
control data

13 9 PREF Receive Empty Flag
13 8 PRAEF Receive Almost Empty Flag
13 7 PRHF Receive Half Full Flag
13 6 PRAFF Receive Almost Full Flag
13 5 PRFF Receive Full Flag
12 4 PXEF Transmit Empty Flag
12 3 PXAEF Transmit Almost Empty Flag
12 2 PXHF Transmit Half Full Flag
12 1 PXAFF Transmit Almost Full Flag
12 0 PXFF Transmit Full Flag

SERIAL 11O INTERFACE CONTROL ADDRESS 4
PAL FILES:
PAL DEVICE:
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This register contains all Serial I/0 receiver interface controls,
controls which are comon to both the Serial I/O transmit and receiver
interfaces, and controls that are initialized during reset and normally remain
unchanged afterwards. Upon power-up reset all outputs are set HIGH.

MICROCODE BITS
control data

17 7 LOOPEN - Receive and transmit
loopback outputs enabled when HIGH,
Serial outputs when LOW

16 6 SOURCE - Selects the source
interface when receiving data - LOW
is IBM-PC, HIGH is HSIO

15 5 CLRINT - Interrupts cleared when LOW
14 4 ENINT - Interrupts enabled when LOW
13 3,2,1 XSEL2, XSELI, XSELO

XSEL2 XSELI XSELO
0 0 0 HIGH
0 0 1 Receive FF
0 1 0 Receive AFF
0 1 1 Receive HFF
1 0 0 Receive AEF
1 0 1 Receive EF
I 1 0 XSTATO
1 1 1 LOW

12 0 RESET - Reset the interface when LOW

SERIAL I/O INTERFACE TRANSMIT CONTROL ADDRESS 5
PAL FILES:
PAL DEVICE:

This register controls the operation of the Serial I/0 interface. Upon
power-up reset or Serial I/O interface reset all bits are set to HIGH.

MICROCODE BITS
control data

17 6 SXRESET - Reset the transmit
interface

16 5 GO - Begins sending data when LOW
15 4 Selects which counter is assigned to

the SIO interface for sending data -
LOW is counter A, HIGH is counter B

14 3,2 REAL, IMAG
REAL IMAG

0 0 64-bit, low word first
0 i 32-bit, imaginary data
1 0 32-bit, real data
1 1 64-bit, high word first

13 1 XSTATI - Transmit status bit 1
12 0 XSTATO - Transmit status bit 0
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SERIAL 11O INTERFACE TRANSMIT INTERRUPT MASK ADDRESS 6
PAL FILES:
PAL DEVICE:

$ The interrupt is masked when the bit is set HIGH and enabled when set
LOW. Upon power-up reset or Serial I/O interface reset all bits are set HIGH.

MICROCODE BITS
control data

13 9 PREF Receive Empty Flag
13 8 PRAEF Receive Almost Empty Flag
13 7 PRHF Receive Half Full Flag
13 6 PRAFF Receive Almost Full Flag
13 5 PRFF Receive Full Flag
12 4 PXEF Transmit Empty Flag
12 3 PXAEF Transmit Almost Empty Flag
12 2 PXHF Transmit Half Full Flag
12 1 PXAFF Transmit Almost Full Flag
12 0 PXFF Transmit Full Flag

HIGH-SPEED I/O INTERFACE CONTROL ADDRESS 7
PAL FILEr:
PAL DEVICE:

This register controls the operation of the High-Speed I/O (HSIO)
interface. After reset all bits are set to HIGH.

MICROCODE BITS

control data
17 7 MEM - I/O HIGH, Memory LOW
16 6 WRITE - Read HIGH, Write LOW
15 4,5 SOURCE Selects the source

interface when receiving data
BIT5 BIT4

0 0 Microprogram ROM
0 1 IBM-PC Interface
1 0 Serial I/O Interface
1 1 None

14 3 GO - Begins sending data when LOW
13 2 HSELAB - Selects which counter is

assigned to the HSIO interface for
sending data. LOW is counter A, HIGH
is counter B

12 1 REAL
12 0 IMAG

REAL IMAC
0 0 64-bit, low word first

0 1 32-bit, imaginary data
S1 0 32-bit, real data

1 1 64-bit, high word first

DATA TRANSFER COUNTER A ADDRESS 8
bits 19:0 Data transfer count to load
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DATA TRANSFER COUNTER B ADDRESS 9
bits 19:0 Data transfer count to load

MACRO RAM ADDRESS REGISTER ADDRESS 10
bits 12:0 Directly addresses MACRO RAM

MACRO RAM ADDRESS COUNTER ADDRESS 11
bits 11:0 Parallel loads counter which directly

addresses MACRO RAM

MACRO RAM COUNTER REGISTER ADDRESS 12
bits 11:0 May be used to load MACRO RAM ADDRESS

COUNTER at a later time

CPH I/O ADDRESS COUNTER ADDRESS 13
bits 23:0 Addresses CPH I/O and memory space

CPH I/O SYSTEM ADDRESS REGISTER ADDRESS 14
bits 5:0 Used to generate system address when

downloading microcode into CPH system(s)

lOP CONTROL REGISTER 0 ADDRESS 15

PAL FILES:
PAL DEVICE:

MICROCODE BITS
control data

12 2,1,0 Interrupt Mapping Select
BIT2 BITi BITO

0 0 0 Interrupt table 0
0 0 1 Interrupt table 1
0 1 0 Interrupt table 2
0 1 1 Interrupt table 3
1 0 0 Interrupt table 4
1 0 1 Interrupt table 5
1 1 0 Interrupt table 6
1 1 1 Interrupt table 7

3.2.4.2 XOP Theory of Operation

SYSTEM INTERRUPT

A system interrupt indicates that one or more boards in a system
requires servicing. The first step is to determine which system generated the
interrupt.

The interrupt service routine must poll each board's configuration
register bit 0 at the board's base I/O address + 1 to determine if that board
caused the interrupt. If this bit reads 0 then that board is generating a
system interrupt. At this point the action to take place is entirely under
software control. The only requirement in hardware is that bit 0 of base I/O
address + 1 on that board be written to with a I to clear the system
interrupt.
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4 lOP RESET

Upon IOP reset ur power-up, if the BOOT RAM/ROM jumper is in the RAM
position,. a state machine presents a WCS 0000 instruction to the ADSP-1401
microsequencer. This places the microsequencer in the write control store
mode and begins outputting addresses starting at O000H counting upwards. Code
is then loaded from the host (selected by a jumper) into the microsequencer
microcode RAM. The entire RAM space of 0000 to OFFF must be loaded with code
or filled with IDLE instructions. Optionally ROM may be installed in place of
RAM and the BOOT jumper set to ROM instead of RAM. In this case the above
load is skipped.

For RAM BOOT jumper the address continues to increment now at 100OH.
For the ROM BOOT jumper the microsequencer address is initialized using the
WCS instruction to 1000H. At this point the microsequencer is no longer
loading its own microprogram memory, but is loading the IOP macroinstruction
memory. IOP macroinstruction memory must again be completely filled with code
or filler. This continues until the microsequencer hits address 2000H where a
microsequencer reset is generated by the hardware beginning execution of the
code at microsequencer location OOOOH. The code beginning at OOOOH
initializes the microsequencer and then jumps to the IOP macroinstruction at

I its program counter address 000H and continues from there.

The microsequencer reset is generated by the combination of the BOOT
state machine in the BOOT state and the mi'rosequencer address bit 13 high.
When this occurs, both the microsequencer is reset and the BOOT state machine
is placei in the RUN mode.

t 3.2.4.3 OP UlHrosequancer

The IOP board has an extensive and independent microcontroller to manage
the several datapaths among the various EVA functional units. The
microsequencer is depicted in Figure 27 where it is shown that the PC (ISA),
HSIO, and SIO (VME Buffer) are controlled by a 48-bit microinstruction as
tabulated here.

Microinstruction Format

BITS USAGE

7 microinstruction opcode
6 conditional select
11 literal data
16 data or relative jump address

A WCS is used for downloading IOP command sequences from the host
computer. The All counter (CNTR) may be used for loops. A10 and A12 are
additional address select registers for the sequencer where each may be
assigned to the three external datapaths (PC,HSIO,SIO) for controlling the
next sequence. The Analog Devices ADSP-1401 microsequencer chip has been
selected because it supports interrupts, nested loops, and a stack. Booting
up the 1401 requires us to put address 20H onto the sequencer program counter.
This will always be the starting address for RESET as well.
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The IOP can detect the arithmetic status of the CPH ALUs. With this

input via the condition code select MUX, the lOP can jump to error handling
routines as needed. Both a flag PAL and a MAP PAL support future
modifications to the lOP when device upgrades and subsequent address MAP
changes are needed. The previous IOP sections have described the control
register functions and the control signals which activate the datapaths

through this lOP board. Once the IOP has served as the traffic director of
the EVA, execution of code begins automatically and continues until the IOP
detects a flag set on any of the EVA boards. A set flag denotes some action
required of the lOP, such as "more data, computation done, or error
condition".

OPERATION - BOOT

On power-up the microsequencer on the IOP board contains no
instructions. The BOOT state machine controls the board at this point,
enabling a path from the host interface (either the PC or SIS interface,
whichever is programmed into the PAL) to the ADSP-1401 microsequencer's
microprogram RAM. It also performs handshaking with the microsequencex's FLAG
input and the host interface's FIFORD PAL to control the timing between the
two, and loads the WCS 000H instruction into the microsequencer. The
microprogram RAM is 8k 48-bit words long, and the BOOT state machine will load
the first 8k 64-bit words of data appearing at the host interface into the
RAM, discarding the upper 16-bits of each word. At this point, the BOOT state
machine resets the microsequencer causing it to start executing code at
address OOOH. This boot code is required to start with a CONT instruction.
The remaining boot code will load the MACRO RAM. The MACRO RAM performs the
high-level instruction execution. It may be thought of as a sequence of
subroutine calls to the microsequencer. The MACRO RAM is 8k 16-bits words
long although only the bottom half will be used for MACRO instructions. The
top 4k words will be used to store configuration data, etc. The boot code
will expect the first instruction to appear at the host interface to be a
LDMACRO which will contain a starting address, and the number of 16-bit data
to be loaded. The upper 48-bits of each 64-bit data word from the interface
will be discarded. To expedite initial CPH tests, since the configuration of
the system will be known, the configuration data which would normally be read
from each of the boards upon reset may be loaded from the host and programmed
directly into the upper MACRO RAM. At this point all downloading has been
completed, and normal operation is to begin. All interaction between the
interfaces and the microsequencer are done under interrupt control. The
microsequencer boot code initializes the interrupt table as follows:

IRQ8 IBM-PC Receive NEF (HOST)
IU7 SYSTEM I 0 (CPH)

IRQ6 SIO Receive REF (VPH)
IRQ5 IBM-PC STATI (HOST)
IRQ4 SIO STATI
IRQ3
IRQ2 COUNTER A ZERO
IRQ1 COUNTER B ZERO

The boot code also reconfigures the interfaces if desired, such as
increasing the clock rate from the initial low rate it defaults to on power-
up.
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3.2.4.4 Processor-to-I/O Processor Camn~eation Protocol

The Processor-to-I/O Processor communication protocol is as follows.
Three single-bit registers will exist for each bank of cache memory: BUSY,
INT, and LOCK. The BUSY register is used by the Processor to indicate to the
I/O Processor (lOP) that it is currently accessing that memory bank, the INT
register will inform the lOP when the Processor is finished with that bank,
and the LOCK register will prevent the Processor from accessing that bank
until the lOP is finished. An example utilizing these registers is given from
the viewpoint of first the Processor, and then the lOP.

PROCISSOI The Processor examines the INT and LOCK bit and if both are
inactive, sets the BUSY bit and begins processing that bank of memory. If the
Ir bit or the LOCK bit were active, it has to wait until both are inactive
before setting the BUSY bit and processing the data. Once the Processor has
completed its processing, it sets the INT bit.

lOPs The lOP examines the BUSY bit and if inactive, sets the LOCK bit
active. It then reexamines the BUSY bit and if still inactive, it begins
transferring the data. At completion of the data transfer, the INT bit is
cleared. If when the lOP reexamines the BUSY bit, it is suddenly found to be
active, the LOCK bit is immediately set to inactive assuming that the
Processor has taken control of the memory bank during the time it took the IOP
to set the LOCK bit. The Processor always has priority. If upon the initial
examination the busy bit was active, the lOP must either use another memory
bank or wait until the BUSY one generates an INT and the data is transferred
out.

In addition, in order to prevent the lOP from having to read the LOCK
register, OR or AND one bit, and write th. LOCK register back, logic should be
incorporated into the memory boards to accomplish these tasks. One method
would be to have four register address bits to select which of sixteen bits
will be changed, and one register control bit to indicate if the bit should be
set or cleared.

The memory BUSY register and INT register must also be added to the
High-Speed I/O (HSIO) bus memory address space, probably by utilizing the
unused bank address 7.

3.2.5 TNR/CPH YM Buffer

The VIE buffer board is the primary linkage between the CPH and the VPH.
This, however, is not its only function. When operating apart from the VPH,
the CPH can use the VNE buffer board to connect to a 6U VNE backplane. When
used with the VPH, the VNE buffer board plugs into the VPH backplane directly.
This board also incorporates the augmented interface for the VPH so that
parallel 64-bit data transfers between it and the CPH can take place. The
board is completely fabricated but untested as yet. A schematic has been
created for the board and is titled Serial 10 board. As the board is
basically a gateway for the VPH and CPR, the majority of the circuits are
transceivers and PALs for controlling activity. The subsequent state machine
design is basic. The major feature of this board is the Gazelle hot rod GaAs
chips to maintain the 80 MHz throughput between the CPR and VPH.
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3.2.5.1 Purpose

This VHE buffer board floorplan shown in Figure 28 is designed to serve
as a high-speed interface between the VPH Processor Board (designed for the
VVE bus) and the CPH's I/0 Processor Board which connects to a proprietary
backplane. The goal of this board is to link the two systems in an efficient
manner to maximize data bandwidth and to minimize the amount of 1/O necessary
to control the data transfers. This board should accept data from both the
VVE bus (data width 4 bytes at 10 MHz) as well as the proprietary 32-bit data
connector which connects directly to the VPH board. Since this extra 32-bit
data connector is synchronized to the VNS data transfer bus, it also transfers
4 bytes at 10 MHz for a total data transfer rate of 8 bytes at 10 MHz or 80
MBytes/sec between the VPH and Serial I/O Board. Actual performance is
estimated to be approximately 67 MBytes/sec assuming an imnediate response
from the VPH to DTACK (Data Transfer Acknowledge). Faster rates may be
obtainable by fine-tuning the Serial 1/O Board's DTACK timing for both reads
and writes once the boards are integrated into a system and actual timing
measurements may be taken. Dipswitches have been designed in so that the
DTACK timing may be adjusted individually for both reads and writes from/to
the FIFOs in 10 nanosecond increments. Depending on the amount of the change,
the FIFORD and/or FIFOWR PALs may also need to be reprogrammed.

At the serial interface, Gazelle HOT ROD ICs have been used which can
transfer data serially at a rate of 500 Mbits/sec or 62.5 MBytes/sec. The
actual serial baud rate is 625 MHz due to the 4-to-5 bit encoding scheme used.
These bits are invisible due to their being inserted at the transmitter and
stripped at the receiver. Data to the HOT ROD ICs is presented 40-bits at a
time. 32 bits are data, 4 bits are parity, and 4 bits are control. These 40
bits are latched at a 12.5 MHz rate. Since only 32 of the bits are data, the
actual data transfer rate calculates out to be 50 MBytes/sec. If this rate
isn't fast enough, Gazelle also makes 800 Mbit/sec and will soon make 1000
Mbit/sec ICs which should be interchangeable with the ICs now in the design,
as long as the PALs which control them are suitably fast. Faster Gazelle ICe
would also mean faster FIFOs must be used. Only one speed upgrade is
currently available from that which is already being used. 35 nsec FIFOs are
now being used whereas 25 nsec are the fastest available at this time, and are
significantly more expensive. Faster FIFOs may also bring the VME data
transfer rate up to its maximum of 80 Mbytes/sec (including the proprietary
32-bit data connector). The Gazelle ICs directly drive 50-ohm coax cable for
short distances. For longer distances, it is suggested that an amplifier be
used for single-ended operation or that fiber-optic cable be used.

3.2.5.2 = Buffer Board Bus Limitations

The VME buffer board uses a subset of the VM standard bus because the
board functions only as a special augmented interface to the VPH. The board
transfers the upper 32 data bits so that a 64-bit parallel bus couples the VPH
and CPH. It has VHS limitations now described.
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Data Transfer Bus

- BERR* is not supported since all addresses are occupied. The only
illegal board accesses are:

1. Attempt to write to the Interrupt Status Register
2. Attempt to read from the Interrupt Status ID Register

This board does not support D16:BLT nor D08(EO):BLT Double- nor Single-byte
block transfers. When the board is configured without the extended 32-bits of
data FIFO, it accepts all Quad-byte, Double-byte, and Single-byte data reads
and writes. When configured with extended 32-bits of data FIFO, it supports
proprietary Octal-byte reads and writes, although it appears to the WhE bus as
a Quad-byte transfer (D32:BLT). When the board is configured without the
extended 32-bits of data FIFO, it accepts Quad-byte Block Transfers. When
configured with extended 32-bits of data FIFO, it supports proprietary Octal-
byte block transfers, although it appears to the VME bus as a Quad-byte block
transfer.

This board does not support BMW (read-modify-write) simply because
reading and writing is done from a separate FIFOs. When the board is
configured without the extended 32-bits of data FIFO, it accepts Triple-byte
reads and writes. Its Priority Interrupt Bus has the signals, I(1), 1(2),
1(3), 1(4), 1(5), 1(6), 1(7), and can generate an interrupt on any of the
seven interrupt request lines IRQI* through IRQ7*.

The VME signal, D08(O), drives DOO-D07 in response to a valid 8-bit, 16-
bit, or 32-bit interrupt Acknowledge cycle. Release On Acknowledge
interrupter type (ROAK) is an interrupt request to be released upon a status
ID register read.

3.2.5.3 Control Registers of the V Buffer Board

The board contains control, interrupt status, interrupt mask, and
interrupt status-ID registers. Their addresses and bit definitions are as
follows:

CONTROL REGISTER

All bits are active high and are reset to zero on power-up or ViE system
reset.

Bit Name Description

0 IRESET Reset Latched Interrupts
I FRESET Reset FIFOs
2 ENINT Enable VWE Interrupts (DEFAULT: Interrupts disabled).
3 INTSELI Selects which VNE Interrupt Request Line is
4 INTSEL2 I pulled low when an on-board interrupt is
5 INTSEL3 I generated (DEFAULT: 000, no interrupt selected).
6 DT Data Type 0 Standard 32-bit VME data (DEFAULT)

I Extended to include 32-bit proprietary
7 SWINT Software Interrupt
8 RLOOPEN Enable Receiver L Input (DEFAULT: S Input)
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9 XLOOPEN Enable Transmitter L Output (DEFAULT: S Output)
10 CXSTATO Control Transmit Status Bit 0 (DEFAULT: LOW)

NOTE: This signal is inverted prior to being
transmitted.

11 XSTATI Transmit Status Bit 1
12 XSELO I Transmitter Control Bit 0 Source Address
13 XSEL1 (DEFAULT: 000)
14 XSEL2 (see table below)
15

TRANSMITTER CONTROL BIT 0 SOURCE ADDRESS

Address Control Bit 0 Transmitted

0 LOW Always LOW (DEFAULT)
1 RFF Receiver Full Flag
2 RAFF Receiver Almost-Full Flag
3 RHFF Receiver Half-Full Flag
4 RAEF Receiver Almost-Empty Flag
5 REF Receiver Empty Flag
6 CXSTATO Control Transmit Bit 0
7 HIGH Always HIGH

INTERRUPT STATUS REGISTER

Bit Name Description

0 XFF Transmitter FIFO Full Flag
1 XAFF Transmitter FIFO Almost-Full Flag
2 XHFF Transmitter Half-Full Flag
3 XAEF Transmitter Almost-Empty Flag
4 XEF Transmitter Empty Flag
5 RFF Receiver FIFO Full Flag
6 RAFF Receiver FIFO Almost-Full Flag
7 RlFF Receiver Half-Full Flag
8 RAEF Receiver Almost-Empty Flag
9 REF Receiver Empty Flag

10 PARITY Parity Error
11 RSTATO Receiver Status Bit 0
12 RSTAT1 Receiver Status Bit 1
13 RECERE Receiver Data Error
14 SWINT Software Interrupt
15
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INTERRUPT MASK REGISTER

All bits are active high and are reset to one on power-up or VME system
reset (all interrupts are initially masked).

Bit Name Description

0 XFF Transmitter FIFO Full Flag MaskI XAFF Transmitter FIFO Almost-Full Flag Mask
2 XAFF Transmitter Half-Full Flag Mask
3 XAEF Transmitter Almost-Empty Flag Mask
4 XEF Transmitter Empty Flag Mask
5 RFF Receiver FIFO Full Flag Mask
6 RAFT Receiver FIFO Almost-Full Flag Mask

7 RHFF Receiver Half-Full Flag Mask
8 RAEF Receiver Almost-Empty Flag Mask
9 REF Receiver Empty Flag Mask

10 PARITY Parity Error Mask
11 RSTATO Receiver Status Bit 0 Mask
12 RSTAT1 Receiver Status Bit 1 Mask
13 RECERR Receiver Data Error Mask
14 SWINT Software Interrupt Mask
15

INTERRUPT STATUS ID

This is simply an 8-bit register which is written to by a VNE bus
master. During an interrupt Acknowledge cycle, the contents of this register
is placed onto the VME data transfer bus in response to a valid IACKIN
address.

REGISTER ADDRESSES

Register Read/Write Address Offset

CONTROL REGISTER R/W 100h
INTERRUPT STATUS R 104h
INTERRUPT MASK R/W 108h
INTERRUPT STATUS ID W lOCh

3.2.5.4 Addzres Select on the U Buffer Board

Three 8-position dipswitches reside on the board for selecting both the
FIFO address as well as the register address block. These two blocks must be
contiguous with the FIFO block residing in the lowest 256-byte block and the
registers in the upper. Neither the addressing for the FIFOs nor for the
registers is fully decoded, leading to address foldover. The FIFO's respond
to any address within their 256-byte block, and the registers each respond to
sixteen different locations (they ignore the upper 4 address bits of the
lowest byte).

The three dipswitches are:

S1 address bits A31 - A24
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S2 address bits A23 - A16
S3 address bits A15 - A09

For each dipswitch OPEN represents a HIGH, CLOSED represents a LOW.
Position 1 represents the most significant bit of that address byte, with
position 8 representing the least.

3.2.5.5 VllBuffer Board Intercupte

The board may generate an interrupt to any of the following conditions:

0 XFF Transmitter FIFO Full Flag
1 XAFF Transmitter FIFO Almost-Full Flag
2 XZFF Transmitter Half-Full Flag
3 XAEF Transmitter Almost-Empty Flag
4 XEF Transmitter Empty Flag
5 RFF Receiver FIFO Full Flag
6 RAFF Receiver FIFO Almost-Full Flag
7 RUFF Receiver Half-Full Flag
8 RAEF Receiver Almost-Empty Flag
9 REF Receiver Empty Flag

10 PARITY Parity Error
11 RSTATO Receiver Status Bit 0
12 RSTAT1 Receiver Status Bit 1
13 RECERR Receiver Data Error
14 SWINT Software Interrupt
15

All of the above signals are active low. When active, a rising edge on
the 25 MHz clock latches them into their respective INTR4 PALs (U62-U65),
causing the INTR4 PAL to output a low on its INT output. The VMEINTSL PAL
(U66), upon detecting one or more of its INTx inputs low, generates a high on
the IRQy output that is addressed by the SELy inputs, and also a low on its
INT output. The SELy inputs are programmable in the CONTROL REGISTER (U34)
and select which VME interrupt request line is being used by the board. The
CONTROL REGISTER ENINT (Enable Interrupt) bit must be set to one to enable the
VME interrupt request open-collector drivers (U39).

RESPONDING TO INTERRUPT ACKNOWLEDGE DAISY-CHAIN INPUT

Upon detecting a low signal on its IACKIN input, the VHEIACK PAL (U67)
sees if three conditions are met prior to responding. First, its INT input
must be low indicating an on-board interrupt is pending. Secondly, the ENINT
input must be high indicating that interrupts are enabled. And thirdly, the
address received on the A01, A02, and A03 inputs must match those on the SELO,
SELl, and SEL2 inputs (and must not be 0). If all of these conditions are
met, then the IDEN output is set to active low, else the IACKOUT output is set
to active low passing along the interrupt acknowledge to the next board in the
system. If IDEN is set low, this signal is passed to the Status ID register
(U36) OERB (output enable read-back) control input causing the register to
output its contents onto the data bus. IDEN also connects to the MUXCTRL PAL
(US1) enabling the VME bus transceivers (U4-UIl).

102



I
3.2.6 PC Interface Board

The primary code development interface to EVA is via a PC interface
board (PC-INT) shown in Figure 29. Space Tech's high-speed PC interface is
designed for versatile interfacing to virtually any type of PC outboard
hardware. The interface is symmetric; that is, the two "ends" of the
interface circuitry are identical with the exception of glue logic tying the
interface to the local environment. This interface is a bidirectional
interface. Interconnect is done via twisted pair cable. RS-422
drivers/receivers are used to ensure noise immuniLy and allow high throughput;
well-written drivers should allow this interface to handle data transfers at
the full ISA bus data rate. An architectural/functional description of the
interface as it appears to the PC/AT system follows.

The interface is accessed in the PC's I/O Address Space (as opposed to
its Memory Address Space), and it occupies a 4-byte section of this space.
The base address at which the interface resides is selectable via an 8-pole
dipswitch on the interface board. It would be desirable that driver software
can be configured to look for the interface at any address within the I/O
Space dedicated to slave add-ons (the first 256 locations are dedicated to the
platform itself, the next 768 locations are available for slave cards).

The interface is a 16-bit resource whose base address must be a multiple
of 4. The least significant address bit will always be 0, since the board is
a 16-bit device. Two addresses - the base address and the base address plus
two - access different resources on the interface. These resources are:

Read FIFO
Write FIFO
Control Register
Status Register
Interrupt Mask Register
Interrupt Register

The Read and Write FIFOs are where input and output data, respectively,
are queued up as they pass to and from the board. The FIFOs share an address;
the cycle type (READ or WRITE) determines which FIFO is accessed. The Control
register is a write-only location. Bits within this register determine the
rate at which data is clocked across the interconnect, enable/disable of the
FIFOs, enable/disable and set the sense of parity checking, enable/disable and
clearing of interrupts, select whether an access to the FIFO/Interrupt Mask
Register location is destined for the FIFOs or the Interrupt Registers, and
setting the interrupt level passed on to the PC in response to a valid
interrupt condition. Two additional bits are multipurpose, undedicated
interface lines which travel directly across the interface without passing
through the Write FIFO. (These two bits appear as two bits in the Status
Register at the opposite end of the interface.)

The Status Register is a read-only location (address coincident with the
Control Register) which provides access to status flags for the FIFOs. Both
Read and Write FIFO flags may be observed via the Status Register. These
flags are Full, Almost Full, Almost Empty, .tnd Empty. Another bit indicates
that a parity error has been detected. Two additional bits are a direct
reflection of the two multipurpose bits from the Control Register at the
opposite end.
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The Interrupt Mask Register is a read/write location which provides a

means of selectively generating a PC interrupt based on the conditions of the
FIFO flags, the Parity bit in the Statue Register, or the assertion of either
of the multipurpose bits from the Status Register. A READ of the Interrupt
Register provides a "snapshot' of the current interrupt conditions which have
occurred since the last clearing of the Interrupt Register. (This provides a
means of determining what type of service is required when more than a single
condition may cause an interrupt.) The location of the Interrupt Mask
Register and the Interrupt Register is coincident with the Read and Write
FIFOs; a bit in the Control Register determines whether an access to this
location is destined for the FIFOs or the Interrupt Registers.

A description of each of the registers and the bits they contain
follows.

CONTROL REGISTER

IXIXIIIIICIEISIOICICICIRIRISISISI
I I IRIRILINIEIDILILILIEIEIEITITI
I I IQIQIRIIITIDIKIKIKISICINIAIAI
I I I I JI lM I*l I I lEII JDIlTlI'

I 1 ll22NITIAI/1211! O0 TII I I I
I I I I ITI ISlE- I I I IVi 11101
I I I I 1*1 IKIVl I I I IEI I I
I I I I I I I IEl I I I I I I I I
I I I I I I I IN I I I I I I I I I
I --------------------------- I

1111111111I II I 1 1 1 1 1 11
151413121110191817161514131211101

Bits 15 and 14 are not used, so are don't cares when writing the
register.

Bits 13 and 12 determine which PC interrupt is asserted when a valid
interrupt condition exists and interrupts are enabled. For:

Bit 13 Bit 12 Interrupt selected

o 0 IRQ1o
0 1 IRQII
1 0 IRQ12
1 1 IRQ15

Bit 11, when asserted, clears all interrupt flags. Ai.s- wltle this bit
is asserted all interrupts are disabled, so to clear in- .apts but not
disable them, this register must be written to twice - first with Bit 11 - 0
then with Bit 11 - 1.

Bit 10, when asserted, enables generation of interrupts. This is the
intended method of enabling/disabling interrupts! If Bit 10 is negated,
interrupts will not be generated, but the Interrupt Register will still be
updated as valid interrupt conditions occur. If Bit 11 is asserted, interrupt

105



flags will NOT be updated and a valid interrupt condition will then be lost.

Bit 9 determines whether an access to the FIFO/Interrupt Mask Register
address will be directed to the FIFOs or the Interrupt Registers. When the
bit is asserted (-I), an access is directed to the Interrupt Registers.

Bit 8 determines the sense of parity sense. Bit 8 - 0 selects odd
parity, and I selects even parity.

Bits 7, 6, and 5 select the clock rate used to clock data across the
interface. The value of these bits determines the division applied to the
local clock which runs at 16 MHz. The values and corresponding division
factors are:

CLK2 CLKl1CLKOIDivisor

0 1 0 0 1 32
0 1 0 1 16
0o 1 0 8
0o 1 1 4
1 X 0 2
I1 x 1 1

Bit 4 is the interface reset bit. A I written to this bit causes all
FIFOs to be cleared and zeroes to be written to all bits of all registers.
(This causes the bit to self clear.)

Bit 3 is the enable bit for the receive (READ) FIFO. A 0 written to
this bit prevents the READ FIFO from receiving any new data across the
interface, but does not prevent data already in the FIFO from being read by
the PC.

Bit 2 is the enable bit for the send (WRITE) FIFO. A 0 written to this
bit prevents the WRITE FIFO from sending data out across the interface, but
does not prevent the PC from writing new data to the FIFO.

Bits I and 0 are the multipurpose interface bits. These bits propagate
directly across the interface and appear as bits 1 and 0 in the Status
Register at the other end of the interface. They may be used as interrupt
lines, or for whatever kind of semaphores may be called for. These bits DO
NOT pass through the FIFOs at either end.
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STATUS REGISTER

IXIXIXIXIXIRIRI RIRIWIWIWIjWIPSISs
I I I I I FI FI FIFI FI FIFIFIAITITI
I I I I I IAIAIFIEIAIAIFIEIRIAIAI
I I I I I FIEl*l*IFI El*t* II'TlT
11111i1*1*1 I 1*1*1 I IT1l1I0
I I'I' iI'I'I I I I I I I IYI I II I I I I I I I I I I I1 1* 1 1 1

151413121 1I0o9i8171615141 31211101

Bits 11 - 15 are not used and should be disregarded when reading the
Status Register.

Bit 10 is the Read FIFO Almost Full flag. A 0 in this bit indicates
that the READ FIFO is almost full.

Bit 9 - Read FIFO Almost Empty flag.

Bit 8 - Read FIFO Full flag.

Bit 7 - Read FIFO Empty Flag.

Bit 6 - Write FIFO Almost Full flag.

Bit 5 - Write FIFO Almost Empty flag.

Bit 4 - Write FIFO Full flag.

Bit 3 - Write FIFO Empty flag.

Bit 2 is the parity error flag. A 0 in this bit indicates that a parity
error has occurred.

Bits 1 and 0 are a direct reflection of the STATI and 0 bits from the

Control Register at the opposite end.

INTERRUPT MASK REGISTER

The template for the Interrupt Mask Register is identical to the Status
Register. A I in any bit position of the Interrupt Mask Register allows the
corresponding bit in the Status Register to generate an interrupt; a 0 masks
it out.
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The addresses at which the various interface resources are located are
shown below.

Base Address (SETMASK - 0) - READ or WRITE FIFO
Base Address (SETMASK - 1) - Interrupt Mask Register (Write)

or Interrupt Register (Read)
Base Address + 2 - Control Register (Write) or Status

Register (Read)

A better understanding of the register function can be obtained by
reviewing the following pseudo-code for testing 2 PC interface boards. A
simple program is suggested.

PROGRAM 1: Write 16-bit data out to one PC-INT board and receive it via
another PC-INT board.

To test this program, install two PC-INT boards into the PC and connect
the two board connectors together so that the output of one board is the input
to the other. The procedure is to send the main memory data out one board and
into the other. Set the sending board's base address to 340. Set the
receiving board's base address to 360. Configure these addresses with the
dipswitches on each board. Although the FIFOs are 2k words deep, only 256
words are being transferred. No check for parity errors are done. NOTE!
Locations 342 and 362 are control registers when writing to them and the
status register when reading from them.. Locations 340 and 360 are data
registers when bit 9 in 340 and 360 are cleared. So data is then transferable
via locations 340 and 360. However, when bit 9 is set to 1 in 342 and 362,
then 340 and 360 are interrupt mask registers when writing to them and
interrupt registers when reading from them.

The program is described in single step manner only to help you
understand the procedures. An actual program would combine several of the
steps into a single "load" assembly language instruction.

1. L MM and M]rT OUDOID REGISTIUB (in 342 and 362)

set cr 4 to 1 in 342 and 362 /reset bit in the control
registers, clears registers and
FIFOs/

set cr 7,6,5 to 001 in 342 and 362 /500kps baud rate in both boards/

2. MilT CONTROL ioISTl base addresses 342 and 362 to talk ntzl time to the
interrupt mask register

met bit 9 to one in 342 and 362
/allows 340 and 360 to write to interrupt
mask reg instead of data registers/

3. IUTLIZI IMMUPT UMK EMGS=

Load mask bits into 340 (note that 340 now writes to mask register
instead of data register because bit 9 in the control register was just set to
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one. (Later, we'll clear this bit in the control register in order to write
to the data register.)

set bit 6 to one in 340
/the write FIFO will interrupt the PC
when it is almost full/

4. ENABLE INTERU

set bits 13,12,11,10 in 342 and clear bit 9 in 342 so 340 is a "data" register
now

/use IRQ 15 to interrupt PC when
write FIFO is almost full in 342
(hence, stop transmitting)/

set bits 1.- ,12,11,10 to 1011 in 362 and clear bit 9 in 362 so 360 is a data
register

/use IRQ 12 to interrupt PC when
read FIFO is almost full in 360/

5. M1TN1 DATA TO 340 (DATA PORT)(If FM10 ia empty or almoat empty, write a
block <2kworde)

Move 16-bit words from main memory and write each word into address 340.
Don't write more than 2k words, otherwise the FIFO will overflow in the board.

set bit 2 of 342 to 1 and bit 3 to 0
/location 340 becomes a
transmitting board/

set bit 3 of 362 to 1 and bit 2 to 0
/location 360 becomes a
receiving board/

set bit 9 of 362 to I
/to be able to set interrupt mask
into 360 instead of sending
erroneous data out 360/

set bit 10 of 360 to I
/enables the read FIFO almost
full interrupt flag/

clear bit 9 of 342
/340 is now a data port again/

write 256 16-bit words to 340

read bit 4 in 342 and don't write til set (FIFO is not full if flag is set)

if set write next word and check bit 4 (ok to send a word)
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6. REM DiATA YAM 360

clAar bit 9 of 362 /now 360 is a data port/
read 256 16-bit words from 360

read bit 7 of 342 before each read and if cleared then read the word

read bit 7 of 362 after each read. If set stop reading and wait til cleared.

7. IN II T.IURUPTS OCCU

If IRQ 15 occurs from the transmitting board (board sending data out of
the PC), then pause writing to 340 to allow 340 to open space in its FIFO by
dumping out to 360.

If IRQ 12 occurs from the receiving board (board sending data back into
the PC), then stop writing to 340 because 360 is almost full and can't store
any more data from the transmitting board.

3.2.6.1 Vfl-Ind PC Interface

The PC interface at the VPH end differs slightly from the PC end
interface. The architecture is essentially the same, but the interface
resources are accessed a little differently than at the PC end. The resources
at the VPH end are accessed at the following 68020 addresses:

Interface Base Address - $24 0000
Read/Write FIFOs - $24 0000
Status/Control Registers - $24 0004
Interrupt Registers - $24 0008

Accesses to all of these resources are longword (32-bit) accesses,
although only the lowest 16 bits are utilized.

The Status, Interrupt, and Interrupt Mask Registers are identical to
those at the PC end. The Control Register is slightly different due to the
difference in local environments. The mapping of the Control Register is shown
below.

Control Register - VPH end

OE EER I SDKKK SCN AA
ILLLIINT4 EE[DTT

L21ONTI/210T I
E 1T 01E I V 10
V * V E
11111 •91876543210'

5 14 3 2110 1 11
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STAT 0 & 1 - These are general purpose interface bits. A bit written to

STAT 0 or 1 in the Control Register appears as STAT 0 or 1 in the Status
Register at the other end of the interface.

J SEND - This bit is an enable for the sending of data across the
interface. A 0 written to this bit does not disable the ability to write to
the output FIFO, but does prevent data in the output FIFO from being sent
until a I is written to this bit.

RECEIVE - This bit is an enable for the receiving of data across the
interface. A 0 written to this bit does not disable the ability to read data
in the FIFO, but does prevent the FIFO from receiving additional data until a
I is written to this bit.

RESET - A I written to this bit resets the entire interface. The FIFOs
are cleared, zeros are written to all bits of all three registers. (This
effectively clears the RESET command once it has been effected.)

CLK 0,1,2 - These bits set the rate at which output data is clocked
across the interface.

ODD*/EVEN - This bit selects odd or even parity across the interface.

NMSTIO - Setting this bit makes a high level on the incoming STAT 0 the
highest priority interrupt, thus giving the PC priority over any VHE
interrupts. (The level of the request as passed to the 68020 is set by bit
15.)

ENINT - This is an enable for PC interrupts.

CLRINT* - A 1 written to this bit clears all PC interrupts. The bit does
not self-clear, so a 0 must be written to this bit after interrupts have been
cleared.

LSELO,1,2 - These bits set the level of the interrupt passed to the
68020 in response to a PC interrupt request. (A request via the STAT 0 line
has its interrupt level set by bit 15 rather than by these three bits.)

STOILEV - This bit determines the interrupt level passed to the 68020
(level 3 or 7) in response to a PC interrupt request on STAT 0.

Upon reset, the VPH PC interface wakes up with zeros in all control
registers. This means that SEND and RECEIVE are disabled, the lowest data
rate is selected, ODD parity is indicated, NMSTIO on the incoming STATO is

* disabled, all interface-generated interrupts are disabled, all interrupts are

cleared, the interface interrupt level is set to zero, and the STATO NMSTIO
interrupt level is set to 3. The Status and Interrupt Mask Registers are
cleared, as are both FIFOs.

A RESET may be effected by writing a "1" to bit 4 of the Control
Register.

To initialize the interface after a RESET, the required configuration
maut be written to the Control and Interrupt Mask Registers. The specifics of
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how the interface is configured depends upon a previously agreed upon protocol
or configuration. At the very least, the FIFOs must be enabled.

Following are a few guidelines for useful diagnostic code which have
been written for testing the VPH end interface and can be found in the
appendices.

Test Routines For PC Interface

1. Have VPH write a few words to the interface, verify that they are
received by PC by reading PC end Status Register and then reading and
verifying the received data.

2. Have VPH monitor the STATO and STAT1 lines in Status Register. The
VPH should update the STATO and STAT1 bits in the Control Register to echo
changes on incoming STAT lines. The echoed STAT values may be monitored at
the PC end for verification.

3. Send several data values to the VPH. The VPH performs some simple
manipulation on the data, and writes it back to the PC for verification.

Once these tests have been run, it can be assumed that basic PC
interface operations are functional. More complex code may then be generated
for testing the various interface generated interrupt capabilities. The PC
layout of the VPH side of the PC interface is shown in Figure 30. It is a
mezzanine board.

3.2.6.2 10 Comma Processor

An 10 command processor (also called 10 Monitor) has been generated for
the EVA system. The following list of "commands" should contain all necessary
data. For each command, the 16-bit command word will be passed first, followed
by any parameters required for that command. The order in which parameters are
passed is the same as the order in which they appear in this list.

Some of the commands on this list may need to be duplicated in the user
software in order to effect slightly different functionality. For instance,
the "transfer to VPH memory" commands should be able to handle data which is
resident in PC memory, or which is located in a disk file. The "transfer from
VPH memory" would be similar.
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PC TO VPH COMMANDS

transfer to VPH memory (word writes)
command word - $0001

parameters: wordcount - 16 bit (this is the number of 16-bit words
to be transferred)

VPH starting address - 32 bit
data type - lower bits of 16-bit word

$0 -> 32-bit floating-point
$1 -> 24-bit unsigned integer (sent as 32
bit with MSB padded with zeros)
$2 -> 24-bit signed integer (sent as 32
bit with MSB padded with zeros)
$3 -> 16-bit signed integer
$4 => program data (32-bit)

output: none
NOTE: data type is ignored

transfer from VPH memory (word reads)
command word - $0002

parameters: wordcount - 16 bit (this is the number of 16-bit words
to be transferred)

VPH starting address - 32 bit
data type - lower bits of 16-bit word

$0 -> 32-bit floating-point
$1 -> 24-bit unsigned integer (sent as 32
bit with MSB padded with zeros)
$2 -> 24-bit signed integer (sent as 32 bit with
MSB padded with zeros)
$3 -> 16-bit signed integer

$4 -> program data (32-bit)
output: the number of 16-bit words requested in wordcount

NOTE: data type is ignored

request VME bus
command word - $0003

parameters: none
output: none

relinquish VlE bus
command word - $0004

parameters: none
output: none

read DHB flag
command word - $0005

parameters: none
output: one 16-bit word (bit 6 is DRI bit)

read xCSR (byte read)
command word - $0006

parameters: address - 32-bit
output: one 16-bit word
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write xCSR (byte write)
command word - $0007

parameters: address - 32-bit
value - 8-bit (sent as 16 bit with MSB padded with zeros)

output: none

transfer from VPH to VME
command word - $0008

parameters: number of words - 16-bit (this is the number of 32-bit

words to transfer)
VPH start address - 32-bit
VWE start address - 32-bit

output: none

transfer from VME to VPH
command word - $0009

parameters: number of words - 16-bit (this is the number of 32-bit
words to transfer)

VPH start address - 32-bit
VME start address - 32-bit

output: none

unused
command word - $OOOA

unused
command word - $OOOB

unused
command word - $OOOC

unused
command word - $OOOD

unused
command word - $OOOE

unused
command word - $000F

unused
command word - $0010

peek into VPE memory (longword read)
command word - $0011

parameters: address to read - 32-bit
output: one little endian 32-bit word

poke into VPH memory (longword write)
comnand word - $0012

parameters: address to write - 32-bit
value - 32-bit

output: none
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peek into 020 register
command word - $0013

parameters: register to read - 16-bit
$0 -> DO
$1 -> D1
$2 -> D2
$3 -> D3
$4 -> D4
$5 -> D5
$6 -> D6
$7 -> D7
$8-> AO
$9 -> Al
$A -> A2
$B -> A3
$C -> A4
$D -> A5
$E -> A6
$F -> A7
$10 -> PC
$11 -> CCR
$12 -> SR
$13 -> VBR
$14 -> SFC
$15 -> DFC
$16 -> CACR
$17 => CAAR
$18 -> USP
$19 -> MSP
$1A-> ISP

output: one little endian 32-bit word

poke into 020 register
command word - $0014

parameters: register to write, size - 16-bit
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byte word longword

$0000 -> DO $0100 => DO $0200 => DO

$0001 => D1 $0101 => D1 $0201 => DI
$0002.> D2 $0102.> D2 $0202.> D2

NOTE: pokes $0003 a> D3 $0103 f> D3 $0203 -> D3

to CCR & SR $0004 -> D4 $0104 => D4 $0204 => D4

are always $0005 => D5 $0105 => D5 $0205 => D5

word opera- $0006 > D6 $0106 .> D6 $0206 .> D6
tions. Pokes $0007 => D7 $0107 *> D7 $0207 => D7

to VBR, SIC, $0008 => A0 $0108 => AO $0208 -> AO

DFC, CACR, $0009 -> Al $0109 -> Al $0209 => Al
CAAR, USP, $OOOA -> A2 $O1OA -> A2 $020A -> A2
MSP, and ISP $0003 O > A3 $OIOB .> A3 $020B w> A3
are always $OOOC .> A4 $OIOC => A4 $020C => A4

longword op- $OOOD -> AS $OIOD => A5 $020D => 5
erations. The $OOOE => A6 $O1OE => A6 $020E => A6

VPH co--and $0001 O > A7 $0101 => A7 $020F .> A7

processor will $0010 => PC $0110 => PC $0210 => PC

accept any $0011 => CCR $0111 => CCR $0211 -> CCR
size for these $0012 => SR $0112 => SR $0212 => SR

registers, but $0013 => VBR $0113 .> VBR $0213 -> VBR

will always $0014 => SFC $0114 => SFC $0214 -> SFC
utilize the $0015 => DFC $0115 > DFC $0215 => DFC

correct sizing $0016 => CACE $0116 .> CACR $0216 -> CACR
when carrying $0017 => CAAR $0117 => CAAR $0217 .> CAAR

out the poke. $0018 -> USP $0118 > USP $0018 > USP

$0118 -> USP $0218 => USP $0218 => USP

$0019 => MSP $0119 => MSP $0219 -> MSP
$OO1A -> ISP $011A => ISP $021A => ISP

value - 32-bit (only the lower byte or word are used for
byte or word writes)

output: none

reset VPH
command word - $0015

parameters: none
output: none

reset PC interface
command word - $0016

parameters: none
output: none

initialize PC interface
command word - $0017

parameters: control register value - 16-bit
output: none

set PC interface interrupt mask
co•mand word - $0018

parameters: mask value - 16-bit
output: none
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read PC interface status register
command word - $0019

parameters: none
output: one 16-bit word

read PC interface interrupt register
command word - $001A

parameters: none
output: one 16-bit word

read VPH status latch
command word - $001B

parameters: none
output: one 16-bit word

write VPH status latch
command word - $001C

parameters: status latch value - 16-bit bits 0,1 are status bits
bits 4,5,6,7 are Zoran 1,2,3,4 interrupt flags
all other bits are don't cares
output: none

write Zoran reset latch
command word - $001D

parameters: reset latch value - 16-bit bits 0,1,2,3 are reset
flags for Zoran 1,2,3,4
output: none

load DSACK SRAM
command word - $001E

parameters: address - 32-bit the vector A[31,24..18] addresses
the SRAM; all other bits are don't cares value - 16-bit the lowest
nibble go)es into SRAM; all other bits are don't cares
output: none

execute starting at address
command word - $001F

parameters: start address - 32-bit (enter LSW first)
output: none

transfer PC interface to VPH memory (longword writes)
command word - $0020

parameters: longword count - 16-bit the number of 32-bit words
to transfer

start address - 32-bit the starting
address in VPH (entered LSW first)
data type - 16-bit (ignored)

output: none

transfer VPH memory to PC interface (longword reads)
command word - $0021

parameterst longword count - 16-bit the number of 32-bit words
to transfer
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start address - 32-bit the starting
address in VPH (entered LSW first)
data type - 16-bit (ignored)

output: the number of longwords requested in longword rount

3.2.7 HSIO Configuration

Each board within a CPH system has a small array of registers whose
purpose is to allow downloading of configuration data and to provide a
mechanism for the communication of control information. Some of these
registers are not registers in the true sense of the word, but provide various
functionality to provide the required range of special communication tasks
required. A description of these registers as they must appear, for example,
on the cache memory boards follows. The HSIO is the information highway for
this communication.

Across the HSIO bus are also control and status information about the
configuration of the current CPH system. This status information consists of
the number of cache memory banks, number of CPH processor boards installed,
and other such information. That status will be contained in the CPH
processor status word which will operate as shown in Figure 31.

HSIO LINEAR ADDRESS SPACE/IO SPACE

The HSIO bus can access a 24-bit address space. This "linear address
space" will be used to access resources in all of the CPH systems the lOP
serves. In order to be able to access configuration information on any board
in any system, an additional address space, referred to as the "10 Space," has
been added. The 10 Space will simplify system mapping and access to
configuration/communication registers. A control bit on the HSIO bus will
indicate when an 10 Space access is to occur, as opposed to an access to the
Linear Address Space. This line will be an active low line which when
asserted dictates an access to the 10 Space. This line is named the /HSIOMEM
line.

When /HSIOMEM is asserted, the address put on the bus will have the
following format:

2 11
3 109876543210

Bits 11 through 23 are don't caret

Bits 8, 9, & 10 (S[2:0]) are the 3ystem Address bits. These bits select
one of eight possible systems.

Bits 3 through 7 (B[4:0]) are the Board Address bits. These bits select
one of thirty-two possible boards within a system.
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Bits 0, 1, & 2 (R[2:0]) are the Register Address bits. These bits

select one of eight possible registers on a given board.

Each board will need a system of switches and/or jumpers to set the
system and board addresses for that particular board.

On the backplane, a bit similar to /HSIOlME exists. This is the /CONFIG
microprogram bit which when asserted indicates that the address on Port A/C is
destined for the configuration registers rather than the general address space
of the CPH system. Data to be written to the configuration registers will be
written in Port C and data read from the registers will appear on Port A. The
/WRCAr and /RDA microprogram bits will be used to determine a processor
configuration write and read, respectively.

REGISTER DESCRIPTION

Each of the registers within the 10 Space on a particular board is a 16-
bit register. Since all data paths are 32-bit paths, the convention will be
adopted of using the least significant 16 bits of a given path when accessing
an 10 Space register. In addition, in the case of a complex (64-bit
real/imaginary) path, the real portion of the path will be utilized.

The upper two registers are 16-bit mailbox registers which are
accessible from the HSIO bus and the backplane. The register located at the
board base address + 4 is accessible from the ESIO Bus only. Register base
address + 5 is accessible from the backplane only. Each of these registers is
read/write from its respective buses.

The register at the board base address is a read-only location which
contains ID information for that board. This register is accessible from
either the HSIO or the backplane. The format of the register is:

Bits 0:3 - a 4-bit board ID code.

Bits 4:7 - a 4-bit memory size code.

Bits 8:11 - a 4-bit block size code.

Bits 12:15 - a 4-bit read latency time code.

These bits may be hard-wired. However, iu view of the fact that the
codes have not yet been defined, and to allow for future re-definition, these
16 bits will be set with jumpers.

The register located at the base address + 1 is important. This
register is a compound, special-purpose read/write register. Eight bits are
semaphore bits, and eight bits are a "mailbox" register for passing control
information between the HSIO and the backplane. A description of how the
semaphores and mailbox must work follows.

Bit 0 is a system interrupt bit. This bit must therefore be passed
through an inverting high-drive open-collector driver to the appropriate
System Interrupt line on the HSIO. Again, jumpers will be used for routing
this bit to the appropriate System Interrupt line.
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Bit I is defined as "/VALID." This bit is active low to indicate if P/H
(Bit 2) is valid. This bit is read/write from both the HSIO and backplane.

Bits 2:4 of this register are for semaphores which are set by the
backplane and cleared by the HSIO. When a write to this register from the
backplane occurs, a zero in any bit position causes the corresponding bit in
the register to remain unchanged; a one in any bit position causes the
corresponding bit in the register to be set (to one). When a write from the
HSIO occurs, a zero in any bit position causes the corresponding bit in the
register to remain unchanged; a one in any position causes the corresponding
bit in the register to be cleared (set to zero). A read from either bus
simply returns the state of the three bits. Bit 2 is defined as "P/H" and
indicates control of the cache board. If Bit 2 is low, the HSIO has control
of the board, but if the bit is high, the processor has control of the board.
Bit I is used to determine if the state of this bit is valid. Bits 3:4 are
undefined, general purpose semaphores.

Bits 5:7 of this register behave just as Bits 2:4, except that they set
from the HSIO and clear from the backplane. All three of these bits are
undefined, general purpose semaphores.

Bits 8:15 of this register are to form a mailbox between the HSIO and
the backplane. That is, these eight bits are read/write from either bus.
When a read occurs, the bits retrieved reflect the most recent write from the
other bus. A write from one bus will not overwrite the most recent write from
the other bus. This behavior is achieved with two 8-bit registers in parallel
being oriented in opposite directions. An HSIO read or backplane write
accesses one register, an HSIO write or backplane read accesses the other.

An interesting aspect of these registers' behavior is that access from
the backplane to any of these registers is achieved by qualification of a bank
address placed on the backplane with the /CONFIG bit asserted. When a valid
bank address is presented during a READ cycle, only the least significant
board at offset zero responds to the read request. During a WRITE, however,
the data presented is written to ALL boards within that bank. The reason for
this is that the processor views memory as banks with a maximum depth of 256k
- it has no concern that there may be multiple boards within a bank. The IOP,
on the other hand, has no conception of "banks" of memory - each board is a
separate entity, regardless of what bank it belongs to, or whether it is
configured as cache or Auxiliary. This means that any "message" to be passed
from the IOP to the processor must be written to the correct board (least
significant, offset zero). It will therefore be up to the programmer to keep
track of such details.

The registers located at the base address + 2 and + 3 are configuration
registers. These registers are loaded via the HSIO bus with information which
assigns each of the blocks on the cache board a cache and/or Auxiliary memory
bank address and offset into the block. Another bit per block assigns most or
least significant status, and another bit selects the board as cache or
Auxiliary memory. Bits are assigned as follows:

Bits 0:3 - Bank Address
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!Bits 4:7 -Offset Block 0

Bits 8:11 - Offset Block 1

Bit 12 - OSB/LSB Block 0

Bit 13 - MSB/LSB Block I

Bit 14 - Aux/Cache

Bit 15 - Undefined

3.2.8 Crosebar

In order to minimize chip count and processor board space, a crossbar
chip study was started. In December of 1989, AMCC formally quoted to STC
their development costs for the ASIC crossbar design. A design quote by
customer through netlist was $85,000 with 14 weeks schedule. A design quote
by customer (STC) at AMCC was $95,000 with 14 weeks schedule. A custom 4:1
Mux with input enable was quoted at $10,000 with 4 weeks delivery. Production
prices for up to 25 prototypes was $750 per piece and $504 in quantities of
100-499. They specified an 80 MHz clock in a 301 PGA configuration using
BiCHOS. Space Tech then sought out ILSI more aggressively for their more
economical ASIC design.

The new chip in cooperation with ILSI was developed as an innovative
crossbar switch at an NRE cost of $35,000 that is particularly well-suited for
high-speed, multiprocessor, microprogra--able, pipelined environments. It is
now described.

This crossbar differs from others currently available in that it is both
high speed (40 MHz) and has a large number of ports (12 by 14), all control
lines are separately accessible, and it has an internal multiported,
configurable register file.

The XB1210-40C crossbar switch is an ASIC fabricated with 1-micron CMOS
technology. All pins use standard TTL levels. The device is packaged in a
256-pin PGA and supports Control Clock rates up to 40 MHz. It supports two-
phase operation by means of two independent data clocks which are used to
clock the output port pipeline registers.

This crossbar has 10 dedicated input ports, 12 dedicated output ports
and 2 bidirectional ports. Each output port can access data from any input
port. All ports are 4-bits wide externally and all internal data paths are 8-
bits wide. Input ports have a 4-bit demultiplexing latch and output ports
have a multiplexor to choose least significant or most significant bits from
the pipeline. This device is particularly well suited to architectures
employing the BIT Multiplier/ALU chipset, where 8 crossbar chips may be
paralleled to achieve a crossbar system that is 32 bits wide externally and 64
bits wide internally.

All output ports are pipelined with a pair of parallel registers - one
for the first phase and another for the second phase. A control line is
provided for each output port to select data from either register. These
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pipeline registers are clocked with two clocks - First Phase Clock and Second
Phase Clock. The Second Phase clock may be tied low for single phase
operation. All control lines are selectively pipelined and may be clocked
using the Control Clock which is also used to clock the register file.

Since all control lines may be accessed simultaneously, the entire
crossbar may be reconfigured every clock cycle as opposed to requiring many
cycles to set up paths as in crossbars where the control signals are bused
together.

The most unique feature of the XB1210-40C is an internal multiported,
configurable register file. This register file is a four port synchronous
static RAM organized as 64 words by 8 bits. It can also be used
asynchronously by tying the Control Clock low. Each port has its own address
and all ports may be used simultaneously. Each register file port may be
accessed by any of the crossbar input ports. The register file may be
configured in different ways - as normal static RAM, as 8 pipeline registers 8
deep, 4 pipeline registers 16 deep, 2 pipeline registers 32 deep or as a
circular buffer. Figures 32 to 35 depict shift mode 1, 2, and 3, and XBAR to
GPR data paths. These operating modes, non-pipelined synchronous and
asynchronous, and pipelined synchronous are described later.

The crossbar consists of four major components - input ports, output
ports, multiplexers, and a four port register file. All internal data paths
are 8 bits wide while all I/O ports are 4 bits wide. Demultiplexing latches
are provided on all input ports and multiplexers are used on all output ports.
This architecture provides high speed and compatibility with various
processors.

INPUT PORTS

The crossbar has ten dedicated input ports (Ii_[0..3] to 110_[0..3]) and
two bidirectional ports (1011 [0..3] and IO12_[O..3]). Each input port has a
4-bit demultiplexing latch and an MSWEN control input associated with it. The
most significant 4 bits of data are presented to the input port while MSWEN is
brought high. MSWEN should then be brought low. Finally, the least
significant four bits should be presented to the input port and held. This
provides the 8-bit word presented to the internal bus.

MULTIPLEXERS

After passing through the input ports, data is passed onto an internal
bus. This bus is 112 bits wide - 8 bits for each input port and 8 bits for
each of two register file read ports. Any 8-bit path of this bus may be
selected by the multiplexers as the data source for the fourteen output ports
or two register file write ports.
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$R48 R47 R50 R51 R52 R53 R54 R5

Figure 32. GM 9 Sift Sequence No"e 1
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R16 R17 R18 R19 R20 R21 R22 R23

1±Lur. 34. OR Shift Sequence MMd. 3
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A B

64 BITS

FL±w- 35. flR to CPR Path
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Each output port has four select lines SELn[0..3] where n is the port
number. The value placed on these inputs determines the source of the data to
be sent to the output port registers. As an example, placing a hex value of
"5" on any set of SEL inputs will select input port 5 as the data source. In
addition, a hex value of "F" will disable the output port and a hex value of
"0" will select the output port register as the data source. This will cause
the ports' registers to hold their current state. The ports' registers will
also hold their state when the output is disabled with an "F". The
multiplexer select inputs for the register file write ports. (SELA[O..3J and
SELB(O..3]) are similar to the ones for the output ports; however, a hex value
of "0" will send all zeros to the register file and a hex value of "F" will
send all ones.

OUTPUT PORTS

Each output port (01_[0..3] to 014_(0..3]) and each I/O port
(1011_[0..3] and I012_[O..3]) have two multiplexers and two 8-bit registers.
The operation of the first multiplexer is described above and is used to
select the source of data presented to the output registers. These registers
are clocked by separate, anti-phase clocks. The phase I register is clocked
by the low-to-high transition of CLK1, and the phase 2 register is similarly
clocked by CLK2. The outputs from these registers are then input to the
second multiplexer.

The second multiplexer has two control lines, PSEL and MSWSEL, which are
used to select 4 bits for the output buffer. A low level on PSEL selects data
from the phase I register while a high level selects data from the phase 2
register.

The MSWSEL input selects between the most and least significant 4-bit
nibbles. A low level on MSWSEL selects the 4 least significant bits to be
output.

REGISTER FILE

The register file is a four port synchronous static RAM memory organized
as an 8 by 8 array of 8-bit registers. These registers are clocked by the
rising edge of CLK3. The register file has two read ports (RPA AND RPB) and
two write ports (WPA and WPB). Each port has its own address and all ports
may be used simultaneously. Writing to the same location from both write
ports simultaneously is allowed. Whenever this happens, the data from RPA is
used.

The write address inputs are WRA_[O..5] and WRB_[O..5]. Each write port
also has an active low enable, /WRENA or /WRENB. The read address inputs are
RDA [0..5] and RDB_[0..5]. The data read from the register file may be
accessed by any output port or be written back into the register file. A hex
value of "D" placed on any output port's SEL select lines will select RPA and
a value of "E" will select RPB.

REGISTER FILE SHIFT MODES

Inputs SMI and SMO are used to configure the register file as a shift
register. When both of these inputs are low, the register file functions like
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a normal static RAM. When SMO is brought high while SMi remains low, each row
of the register file becomes an eight deep shift register. Writing to the
first register of each row causes the shift. The seven remaining registers of
each row will be written to with the data from the preceding register. The
old data in the last register is lost forever. Writing to a register other
than the first register only updates that specific register. Reading never
modifies any data.

Bringing SMI high while leaving SMO low links pairs of rows to give a
configuration of four shift registers, each 16 registers deep. Bringing both
SMI and SMO high links four rows together yielding two shift registers, each
32 registers deep.

OPERATING MODES

The crossbar has three possible modes of operation: non-pipelined
synchronous, non-pipelined asynchronous, and pipelined synchronous. The MODE
input selects whether certain other inputs pass through input pipeline
registers, or if these registers are bypassed. The affected inputs are:

SELx[O..3], WRA_[0..5], WRB_[O..5], RDA_[O..5], RDB_[O..51, PSELU,
SELA [0..3], SELB_[O..3], /WRENA, /WRENB, SMI, AND SM0. Inputs which are not
affected are: Ix[O..3], MSWENx, and MSWSELx.

A low level on MODE causes all inputs to bypass the input pipeline
registers. With CLK3 left running, non-pipelined synchronous mode operation
is achieved. This is the normal mode of operation and no special
considerations are involved.

If CLK3 is tied low while MODE is held low, non-pipelined asynchronous
operation is invoked. In this mode, the register file registers are clocked
with the rising edge of /WRENA or /WRENB. Asynchronous register file writes
can therefore be accomplished in this mode. Operation of the input ports,
output ports, and multiplexers is unaffected by the absence of CLK3.

If MODE is brought high, pipelined synchronous mode operation is
determined and CLK3 must be left running. This is because CLK3 is used to
clock the input pipeline registers. The main consideration in this mode of
operation is the affected inputs must be presented to the crossbar one CLK3
cycle sooner, and slightly different set-up and hold times may be involved.

A number of important control signals are listed next in Figure 36.
Register file and port control follow in Figure 37. Then, timing charts for
the mode 0 operations can be found in subsequent Figures 38 through 43. These
data sheets formed the specifications for contracting the fabrication effort
out to ILSI in Colorado Springs. Testing of the crossbars was accomplished at
ILSI and later at Space Tech. The same test vectors by ILSI were on our
emulyzer to verify ILSI tests. Those vectors can be found in the ILSI manual
for the crossbars.
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CLK1 Active high clock for phase one

output port registers.

CLK2 Active high clock for phase two
output port registers.

CLK3 Active high clock for register file
and control input pipeline registers.

MODE Bypasses control input pipeline
registers when low.

11-[0-3] to Data input ports to the crossbar

110-0..3] and register file.

MSWEN1 to Controls input port demultiplexing latches.

MSWEN12 Latches are transparent when high.

SELl[O..3] to Select inputs for output port registers.

SEL14_[O..3]

PSFL1 to Selects phase one register for output

PSEL14 when low and phase two when high.

MSWSEL1 to Multiplexer for output ports. Selects
MSWSEL14 most siqnificant four bits when high.

O1_0..3] to Data output parts from crossbar and
O10_F0 ..31 register file.
013_ 0Q..3
01410-..3],

1011 __-0.3]. Bidirectional data ports.
S012toA..3]

SELA[O..3] Select inputs for register file write port A.

SELB[O..] Select inputs for register file write port B.

SFActive low write enable for register file port A.

SActive low write enable for register file port B.

WRA[O..5] Address inputs for register file write port A.

WRB[O..5] Address inputs for register file write port B.

RDA[O..5] Address inputs for register file read port A.

RDB[O..5] Address inputs for register file read port B.

SMODEO Shift mode conlrol inputs for register file.

SMODE1

lIr. 36. control 94=19a.
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Output Port Control Register File Control

SOutput Port 0'1 Register File
Register Source NN Write Source

0 0 0 0 Registers Hold Current Value 0 0 0 1 All Zeros (Clear Register)
0 0 0 L Input port #1 0 0 01 Input port #1
0 0 1 0 Input Port #2 0 0 1 0 Input Port #2
0 0 1t Input Port 13 0 0 1 1 Input Port #3
0 1 0 0 Inpul. Port #4 0 1 0 0 Input Port #4
0 1 0 1 Input Port #5 0I 0 1 Input Port #5
0 1 1 0. Input Port I Ili 01 1 11 1 Ipt Port #6

0 1 1 1 Input Port # 7 0 1 1 1 Input Port #_7
1 0 0 0 Input Port #1 1101010 Input Port #8
1 0.0 1 Input Port #9 1 00 01 Input Port #9
1 0 1 0 Input Port #10 1 Oi1 0 Input Port #10
I 0 1 Input/output Port #11 1 O I 11hpul/Oulput I1(mt III
1r 1 0 0 Input/Output Port 12
I 1 0 1 Reqister File Read Port A 1 1 O 1 Register file Rood Port A

1 1 1 0 Register File Read Port B 1T 11 0 Register File Read Port iI
1 1 1 1 Output High Impedance 1 7 1 All Ones (Set Register)

[9 • Source for Output Register File
00 Slc

Port OntO..3] "m' Shift Mode Select
0 0 Least Significant Phase One Register 0 0 Normal "RAM' Mode

0 1 Most Significant Phase One Register 0 1 8 by 8 Shift Register Mode
1 0 Least Significant Phase Two Register 1 01 4 by 16 Shift Register Mode
0 1 Most Significant Phase Two Register 0 1 2 by 32 Shift Register Mode

ligu.re 37. Register File and Port Control
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Input Port to OuLput Port

Transaction for CLK1

MODE=1 PSEL-0

Ix 0.. 3J MS DAI/A LS DATA

MSWENx "////

SELy[O..3J/ UAL.

CLK3
tPDI m

CLK I

MSlJSELy /

0Y[0..31MS DATA• LS/TA

PARAMETER DESCRIPTION MIN MAX UNITS

tsuIt Input Data to NSIEH LOW Set-up ns

tHDI Input Hold from flSIUEN LOW ns

tSU2 Input Data to CLKI HIGH Set-up ns

tHD2  Input Hold From CLKI HIGH ns

tSU_ Set-up From tYSWEN LOW to CLKI HIGH ns

ti&J3 ilL Inputs to CLK3 HIGH Set-up ns

tHD3  SIL Inputs Hold From CLK3 HIGH ns

tpDI CLtl HIGH to Output Data Ualld ns

t N Output Data Hold From CLKI HIGH ns

tpD2  flSSEL to Output Data UaIlid s

t Output Data Hold From tYSWSEL Tra•sitIon ns

1iLr.Le 38. Tim n Charts
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Input Port to Output Port

Transaction for CLK2

HODE=1 PSEL=1

t9Jj 41D~i tSJ2tHj

1x10. .31 Ms TA LS/ D/////T
Lt tU

MSIWENx Y.///

SELy[4 B.. 33 JF/

CLK3

CLK2 __p

MSSWSEL y,/

o>,E.. .3] MS DAT/ LS DATA

PARAMETER DESCRIPTION MIN MAX UNITS

t___ Input Data to IiSLEN LOW Set-up ns

tHDI Input Hold from ISWH LOW ns

tSU2 Input Data to CLK2 HIGH Set-up ns

tHD2 Input Hold From CLK2 HIGH ns

tSU_ _ Set-tap Frau flS4EN LOU to CLK2 HIGH ns;

tSU3 SEL Inputs to CLK3 HIGH Set-up ns

tri3 SEL Inputs Hold From CLK3 HIGH ns

tpDI CLK2 HIGH to Output Data Ualid ns

t HIX Output Data Hold From CLK2 HIGH ns

t P1 2  IIS6SfJ to Output Data Walld ns

t HD5 Output Data Hold From ISUSEL Transition ns

igmure 39. Timing Charts
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OUTPUT PORT CONTROL

MODE=0

PSELx

S E L x ES. .3 3 _ _ _ _ _ _ _ IF__ _ dF 3K W M F 3K L S if F

Ox~E. .31 PHASE IDATA P~E2T PED

PR1~nEER DESCRIPTION MIN MRX UNITS

tFO PEL Transition to Outpuat Data Wtld '

too___ Ouatput Data Hold From PSEL Trrmit io

_______ SEL a F to Outpuat HI0 Impedaame AS

t SEL V F to Ouatput to. Impedance

MIODE=1I

PSELx

SELx(S. .3] D =-.

CLK3

Ox[O. . 3J %AIDT 4S A HG

PRRVEER DESCRIPTION MNIHW UNT141S

t PSIEL or SEL Irpats to CL93 Set-up no

ND~I P511. or SE Ifputs M)id From dM IBI HIHas

Wp C1.10 HIGH to Outlput Data Ualld As

tow_____ Gatvt Data Hold From CLII HItd4 ne

4_____ Output Rio~ lapeuarce From 0.3 RIO# A
tb Otput Lou Impedance Free 0.32 14IGI

71611" 40. Timing Chart.
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Input to 'Output Port Transaction for CLKI
MODE=O PSELy=O

StSUl-tHDl--t SU2 .--4.t HD2

I40.3) MS DATA IN X LS DATA IN

-- tSU4

MSV&Nx ////

SE y O .3 " • t SU 3 -- t H 03 .-

SCL,(O..3] "VALUE-.

CLIKI
w ,-t PD2 -0

MSWSELy ---*r•/!Zy///////y/A .; I •

Oy(O..3] / / / ./ DAIA OUT LS DATA OUT

Parameter Description Min Max UniLs
tSUI Input Data to MSWEN LOW Set-up IV no
lHDl Jnput Hold From MSW•N LUW if _f Sno
ISU2 Input Data to CLKI HIGH Set-up I J 14A no
-IHD2 Input Hold From CLKI HIGH I) no

-SU4 Set-up From MSWEN LOW to CLK1 HIGH " ____

t _SJ3 SEL Inputs to CLKI HIGH Set-up 17 __AI no
'HD3 SLL Inputs Hold From CLKI HIGH 0 N.
'Pol CLKI HIGH to Output Data Valid h 17 n2
lHD4 Output Data Hold From CLKt HIGH no
_P02 MSWSCL to Output Data Valid ___ no
lHD5 OutPut Data Hold From MSWSEL 7ronsllion no

lFgure 41. Timin Charts
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REGISTER FILE REFD

J1ODE=0

CLK3 L ý7

RDA or M M FRDB

SELx[0. .3J FQ f

CLK 1

CLK2

PARAMIETER DESCRIPTION MIN IIAX UNITS

tt~il FOR or SEL Inputs to CUC3 Set-uapo

_______ FIDA or SEL Inputs Hold From CUC3 HIGH ns

tSU2 FORor SEL Inpuats to CLK3 Set-up ns;

AH2FDA or SEL Inputs Hold From CUC3 HIGH ns

tpb1  CLXI HIGH to Output Data Waild no

_______ CLK2 HIGH to Output Data Ualld no

Figure 42. TmI=ng charts
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REG ISTER F ILE W]RI TE

CLK3

I xB10. .5] M ýAAýLSýDF

___________ nput Dta Hol Frm L 3 HIG H As

SELA0.3 or SL oCK IHStu

SEA r EL HldFrm LK HGHn

CLK3 rL~ oCK3HG e-pA

WRJRA.5 or JBHlFrmC3HIHA

t S U LNE N o r I J E B t C LK 3 H I G S t- u p A

tHDI InputA orata Hold From CLK3 HIGH n

tSU2 MSWEN LOW t 4L3.HG St-~up nsft

tSU3 SLF1 o SELBto C 138HG e-pn
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3.2.8.1 Testing the Crossbars

Characterization tests were performed by ILSI at ILSI before shipment to
Space Tech. Those test sequences and vectors are listed in the ILSI
specifications manual under separate cover. Verification tests were performed
at Space Tech with a Hi-Level Emulyzer connected to the input and output ports
of each device. The same vectors were used at Space Tech as were used at ILSI
to confirm the operation of each device. Of the ten shipped to us, only one
failed and was dead on arrival. It was replaced by ILSI after they confirmed
our results. The vectors used by Space Tech and ILSI set up is and Os in
adjacent bits alternating and repeating so that crosstalk could be discovered.
Clocks were adjusted from 1 to 20 MHz and the chips passed at all clocks
except 20 Mz in some modes. Those modes are not used in the CPH so they were
important. The important modes were mode 0 modes and all passed these mode
tests at all clock speeds.

The typical test setup of vectors used are shown in the following sheet
from the engineer's notebook in Figure 44. Here, we can see that read and
write ports A and B were activated with the several input data control lines
and output data control lines. The testing took approximately 4 hours per
device since 12x14 combinations of configurations were to be tested by
numerous test vectors. The Space Tech test fixture is shown in the next
drawing as Figure 45. The test fixture uses the pinout assignments for the
crossbar chip as shown in Figure 46. A 6U Mupac VHE board was used with PALs
and registers to clock test signals and controls onto the crossbar under test.

A PAL function was created for the test jig, XBARIM.POS, to input data
into the I/O ports in a pipelined, synchronous manner. The test vectors of
mode 0 could be used in testing mode I with the following modifications. The
write pulse had to be shifted from the least significant vectors to the most
significant positions. The write pulse had to be widened by several
nanoseconds (accomplished by modifying XBAR2.PDS to include an additional
input, namely async). The input data to the I/O ports had to be shifted one
cycle sooner to offset the additional pipelining the PALs now present. And
the SELx data of any F's (to high impedance output PORTx) had to be shifted
one cycle sooner also (due to mode I internal pipelining of SELI data).

With the modifications described and one new set of vectors to test all
of the internal pipelining, six sets of vectors were used to test mode 1
operation. After creating output reference files to compare XBAR outputs to,
testing of the IBAR chips commenced in earnest.

While testing the XBAR, some sets of vectors ran better if a different
amount of delay was used between SLK3 and POCLK. Thus, a "gate delay line"
was introduced to the jig to allow selective clock skewing. The delays needed
for optimum testing are listed in the Engineer's Notebook which gives the
complete testing procedure.

The result of testing was that 9 of 10 chips ran all 11 sets of test
vectors with no erroneous output. The tenth chip, however, did not
successfully run even one set of vectors. Several clock speeds and skews were
tried and didn't get any improvement. The chip was then packaged up and sent
back to ILSI for replacement.
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Date: 1/23/92 File: F:\PHIL\TENP\XBAR IN.I!

I ??????????????????????????????????????????????????????????????????????
2 - PATTERN GENERATOR OUTPUT WORDS
3 -

4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA&AAAAAAAAAAAAAAA5 -
6- MSN LSN
7 - WORD FORMAT: HEXI/HEX2/HEX3/ ...... /HEX34/HEX35/HEX368 -
9-
10 - NIBBLE LEGEND:
11 -
12 - HEXI s /WCA XXX WRA-5 WRA-4
13 - HEX? - WRA- WRA'-2 WRA-1 WRA-O -- WRITE PORT A CONTROL
14 - HEX3 : SELA-3, SELA:2, SELA-1, SELA-O
Is
16 - HEX4 a /WCB XXX WRB-S. WRB-4 -'

17 - HEX$ R8-31 WRB-2, WR-1 WRBO WRITE PORT 8 CONTROL
18 - HEX6 2 SELS-i, SELl-2, SELd-1, SELB-O __

19 -
20 -
21:- HEX z XXX' XXX RDAS RDA4 - READ PORT A CONTROL
22 - HEX8 RDA-3, R6A-2, R6A-1, RDA-O
23 -
24 - HEX9 z XXX, XXX RDB-5. RDOB-4 READ PORT 8 CONTROL
25 - HEXIO = RDB-3, R6B-2, ROB-I, RDB-O
26 -
27 -
28 - HEXi z SELI-3 SELl-2, SELl-I, SELl-O
29 - HEX2 z SEL2-3, SEL2-2, SEL2-1, SEL2-0
30 - HEX13 a SEL3-3, SEL3-2, SEL3-1, SEL3-O
31 - HEX14 z SEL4-3 SEL4-2, SEL4-l, SEL4-0
32 - HEX15 z SELS-3 SELS-E , SELS-l, SELS-0
33 - HEX16 z 5EL6-3 SEL6-2, SEL6- , SEL6-O
34 - HEXI7 2 SEL7-3 SEL-2,, SEL-, L7-0 -- OUTPUT DATA SOURCE
35 - HEXIS z SEL6-3 SEL8-2, SELO-1, SELB-0
36 - HEXI9 x SEL9-3 SEL9-2, SEL9-1, SEL9-0
37 - HEX20 x SEL1O-3, SELIO-2, SELIO-l, SEL1O-O
38 - HEX21 z SELI1-3 SELII-2, SEL11-, SEL11-0
39 - HEX22 a SEL12-3, SEL12-2, SEL12-1, SEL12-0
40 - HEX23 = SEL13-3 SEL13-2, SELl3-1, SEL13-O
41 - HEX24 a SEL14-3, SEL14-2, SEL14-1, SELI4-0 ___
42 -43 -
44 - HEX25 a 1-3, 11-2, 11-1, i1t0 --

45 - HEX26 z 12-3, 12-2? 12-1, 12-0
46 - HEX27 z 13-3. 13-2, 13-1, 13-0
47 - HEX28 z 14-3, 14-2, 14-1, 14-0
48 - HEX29 z 15-3 15-2, 5-1, 15-0
49 - HEX30 a 16-3 16-2 16-1, 16-0 INPUT DATA
so - HEX31 17-3 17-2, 7-1, 17-0
51 - HEX32 z 18-3, 18-2, 18-i, 10-0
52 - HEX33 z 19-3, 19-2, 19-I, 19-0
53 - HEX34 z 110-3, 110-2, 110-1, 110-0
54 - NEX35 a 1011-3 1011-2 1011-1, 1011-0 3'
55 - HEX36 a 1012-3, 1012-2? 1012-1, 1012-0 8 ,
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3.2.9 CPS Hicrosequencer

As with many of the other "glue logic" functions, a microprogram
sequencer chip fast enough for the EVA architecture was not available in 1990.
A sequencer that can also support relative addressing and interrupts was
required. Several are available now but they remain too slow. Available
sequencers that can handle the high speed don't support interrupts or the
necessary addressing modes. One solution was to build the sequencer out of
high speed PALS and logic chips. An architecture that could be built from
available parts was designed. The problem with this approach is that over 50
chips are required. A few components could be added to one of the simple
sequencer chips to support the required addressing modes. This would reduce
the part count but the combined delay would be too great to meet the high
speed requirement. Fortunately, IDT developed a suitable part by 1991.

The CPH Microprogram Sequencer (CPH-MS) is designed to perform its
function in a 50 nsec maximum cycle time. Although the timing analysis is not
complete, a preliminary analysis of the critical timing paths, those paths
which pass through the slowest and/or greatest number of components seem to
meet the timing criteria. A microinstruction set that has been selected is:

INITIALIZATION
Load Loop Counter 16-bit count
Load Stack Pointer 10-bit address
Load Subroutine RAM Pointer 10-bit address
Load Subroutine RAM 16-bit data

IMMEDIATE
Jump Immediate 16-bit address
Jump Immediate Conditional 16-bit address
Loop Immediate 16-bit address

RELATIVE
Jump Relative 16-bit relative address
Jump Relative Conditional 16-bit relative address
Loop Relative 16-bit relative address

INDEXED
Call 10-bit index
Call Conditional 10-bit index

INTERRUPTS
Set Interrupt Mask 8-bit data
Reset Interrupt 8-bit data

OTHER
No Operation no data
Return no data
Return Conditional no data
Push no data
Pop no data

The method of using indexed subroutine calls allows each software module
to be assembled, linked, and located at a base address of 0000h. The modules
may then be loaded into program memory and called by their index number. Each
call accesses the subroutine RAM by index number, and the subroutine RAM then
loads the program counter with the address corresponding to the physical
location of the module. Care must be taken when programing the modules not
to use immediate instructions. Implementing the interrupt vector table into
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the same RAM as the subroutine indices, and separate from the stack RAM,
provides for the simultaneous access of both banks of RAM during a Call
instruction. This allows the present address in the program counter to be
pushed onto stack at the same time that the new 'call' address is presented to
the program counter for a 50 nsec single cycle instruction. By placing the
interrupt table in the subroutine RAM, the same single cycle instruction may
push the program counter onto the stack upon detection of a hardware
interrupt. This also simplifies hardware design, since the latches necessary
to hold the RAM address while loading in data need not be present for the
stack RAM.

The following features are supported:

A 2-to-1 MUX allows the immediate/relative address to come from a source
external to the microsequencer. The stack and subroutine RAM is 4kx16 in
size. An additional output MUX and a tri-state buffer were added to create
two separate buses, one dedicated to the microsequencer and the second drives
the external RAM. This helps guarantee that the tight timing requirements of
the microsequencer won't be compromised.

Several restrictions on instruction sequences have been eliminated by
designing the stack pointer out of PALs rather than discrete up/down counters.
Prior to the change, CALL and PUSH type instructions which increment the stack
after writing to it conflicted with RET instructions which increment the stack
before reading from it. The solution required that a 40 MHz clock be brought
in and logic added to compare the previous instruction to its successor and
decide at each 20 MHz clock whether or not to increment or decrement for the
CALL, PUSH, and RET type instructions. For POP, LS, TWBI, and TWBR
instructions where the data is merely discarded from the stack, this is done
using the 40 MHz clock at mid-instruction.

The full instruction set now follows. Since the instructions are
'microcoded' using PALs, and the PALs have many product terms remaining,
additional instructions may have to be added as required without changing any
hardware.

NOTE: In the following description /CNTO refers to the loop counter's
terminal count which goes low upon reaching zero, and /COND is a condition bit
which indicates a true condition when low.

INSTRUCTION SET

NOP No Operation
LDLC Load Loop Counter
LDSP Load Stack Pointer
LDSRP Load Subroutine RAM Pointer
LDSUBR Load Subroutine RAM
SIN Set Interrupt Mask
RIM Reset Interrupt Mask
RINT Reset Interrupt
JI Jump Immediate
JIC Jump Immediate Conditional
JR Jump Relative
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JRC Jump Relative Conditionally
LI Loop Immediate
LR Loop Relative
LS Loop Stack
TWBI Three-Way Branch Immediate
TWBR Three-Way Branch Relative
CALL Call
CALLC Call Conditional
RET Return
RETC Return Conditional
PUSH Push
PUSHC Push Conditionally
PLDLC Push and Load Loop Counter
PLDLCC Push and Load Loop Counter Conditionally
POP Pop (Discard Top of Stack)
POPC Pop Conditionally (Discard Top of Stack)
El Enable Interrupts
DI Disable Interrupts

When a data field of less than 16-bits is specified, the data is to be
right justified into the lowest bits possible. For example, an 8-bit number
A5h will become OOA5h in the 16-bit data field.

Mnemonic OpCode Data Description

NOP 07Fh Does nothing but consume time.
The next address is the program
counter + 1.

LDLC 07Eh 16-bits Load loop counter with the data
appearing in the data field.
The next address is the program
counter + 1.

LDSP 07Dh 12-bits Load stack pointer with the data
appearing in the data field.
The next address is the program
counter + 1.

LDSRP 07Ch 16-bits Load subroutine RAM address
pointer with the data appearing
in the data field. The next
address is the program counter
+ 1.

LDSUBR 07Bh 16-bits Write the data to subroutine/
interrupt RAM location pointed
to by the subroutine address
pointer last loaded using the
LDSRP instruction. The next
address is the program counter
+ 1.

SIM 07Ah 8-bits Set interrupt masks indicated in
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the data field. Each bit in the
data field corresponds to one
interrupt. The least significant
bit corresponds to interrupt 0
(/INTO) which has the lowest
priority, up through the most
significant bit for interrupt 7
(/INT7) which has the highest
priority. Wherever a bit is set
to one in the data field the
corresponding mask will be set.
The next address is the program
counter + 1.

RIM 079h 8-bits Resets interrupt masks indicated
in the data field. Each bit in
the data field corresponds to one
interrupt. The least significant
bit corresponds to interrupt 0
(UINTO) which has the lowest
priority, up through the most
significant bit for interrupt 7
(/INT7) which has the highest
priority. Wherever a bit is set
to one in the data field the
corresponding mask will be reset.
The next address is the program
counter + 1.

RINT 078h 8-bits Resets the interrupts indicated
in the data field. Each bit in
the data field corresponds to one
interrupt. The least significant
bit corresponds to interrupt 0
(UINTO) which has the lowest
priority, up through the most
significant bit for interrupt 7
(/INT7) which has the highest
priority. Wherever a bit is set
to one in the data field the
corresponding interrupt will be
reset. The next address is the
program counter + 1.

JI 077h 16-bits Jump to the address specified in
the data field.

JIC 076h 16-bits Jump to the address specified in
the data field only if the ICOND
signal is low, else the next
address is the program counter
+ 1.

JR 075h 16-bits Jump to the address created by
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adding the program counter to the
data field.

JRC 074h 16-bits Jump to the address created by
adding the program counter to the
data field only if the /COND
signal is low, else the next
address is the program counter
+ 1.

LI 073h 16-bits If /CNTO is high, indicating that
the loop counter has not yet
reached 0, then jump to the
address specified in the data
field.

If /CNTO is low the next address
is the program counter + 1.

LR 072h 16-bits If /CNTO is high, indicating that
the loop counter has not yet
reached 0, then jump to the
address created by adding the
program counter to the data field.

If /CNTO is low the next address
is the program counter + 1.

LS 071h If /CNTO is high, indicating that
the loop counter has not yet
reached 0, then jump to the
addzess located on the top of the
stack. This address is to remain
on the top of the stack after the
jump.

If /CNTO is low, then the jump
address on the top of the stack is
discarded and the next address is
the program counter + 1.

TWBI 070h 16-bits If /CNTO is high, indicating that
the loop counter has not yet
reached 0, and /COND is high
indicating a false condition, then
jump to the address located on the
top of the stack.

If ICNTO is low and /COND is high
then jump to the address specified
in the data field. The address on
the top of the stack is discarded.

If /COED is low then the next
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address is the program counter + 1
and the address appearing on top
of the stack is discarded.

TWBR 06Fh 16-bits If /CNTO is high, indicating that
the loop counter has not yet
reached 0, and /COND is high
indicating a false condition, then
jump to the address located on the
top of the stack.

If /CiTO is low and ICOND is high
then jump to the address created
by adding the program counter to
the data field. The address on
the top of the stack is discarded.

If /COND is low then the next
address is the program counter + 1
and the address appearing on top
of the stack is discarded.

CALL 06Eh 12-bits The current program counter is
incremented and stored onto the
top of the stack. The program
then jumps to the address
appearing in the subroutine/
interrupt RAM at the SUBRAM
address given in the data field.

CALLC 06Dh 16-bits If (COND is low then the current
program counter is incremented and
stored onto the top of the stack.
The program then jumps to the
address appearing in the
subroutine/interrupt RAM at the
SUBRAM address given in the data
field.

If (COND is high then the next
address is the program counter
+ 1.

RET 06Ch Jump to the address appearing on
the top of the stack.

RETC 06Bh If /COND is low then jump to the
address appearing on the top of the
stack.

If (COND is high then the next
address is the program counter + 1.

PUSH 06Ah -- Store the program counter + 1 on
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the top of the stack. The next
address is the program counter + 1.

PUSHC 069h If /COND is low then store the
program counter + 1 on the top of
the stack. The next address is the
program counter + 1.

PLDLC 068h 16-bits Store the program counter + 1 on
the top of the stack. Load loop
counter with the data appearing in
the data field. The next address
is the program counter + 1.

PLDLCC 067h 16-bits Store the program counter + 1 on
the top of the stack. NOTE: The
preceding push was not conditional.
If /COND is low, then load the loop
counter with the data appearing in
the data field. The next address
is the program counter + 1.

POP 066h Discard the data appearing on the
top of the stack. The next
instruction is the program counter
+ 1.

POPC 065h If /COND is low then discard the
data appearing on the top of the
stack. The next instruction is the
program counter + 1.

El 064h Enable future and pending unmasked
interrupts to be serviced. The
next instruction is the program
counter + 1.

DI 063h Disable all interrupts from being
serviced. The next instruction is
the program counter + 1.

Microinstruction productions for the CPH need to account for the timing
delays in the crossbar, both in the processor and in the address generator.
When selecting a pass through transfer or "in to out" in any direction, clock
1 selects the path (SEL). Clock 2 latches the input data. At Clock 4 the
output data is available to the destination. To write data into the register
file, Clock 1 selects the path (SEL), the register address, and the write
enable signal (WRENA). At Clock 2 the data must be available to the crossbar
for writing into the register. To read from a register, Clock I selects the
port and the register address. At Clock 3, the data is available to the
destination. (mode 1 operation only). The sample microprograms in the
appendix take these delays into account. They should be examined carefully.$ Additional notes on microprogramming can be found in a later section.
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For example, the IMMAD field or imediate address field is active in
both phases. From the machine definition file in the appendix, one sees that
the two ASSIGN statements are used. The first statement assigns physical bits
237 thru 339. The second statement assigns physical bits 621 thru 723. The
higher order bits are reserved for the first phase and the lower order bits
are reserved for the second phase. A particular phase at any clock cycle is
selected transparent to the user. Clocking is done automatically.

3.2.10 Backplane

The CPH backplane depicted in Figure 47 entitled "Backplane" is a custom
backplane with the footprint of a 9U VNE board. However, all CPH boards
require many more backplane pins then can be provided on the P1, P2, and P3
connectors of a standard VME bus. Special connectors from AMP were designed
into the custom backplane. The plane must also have pinouts on the processor
board which are different than those on the address generator and cache memory
boards because the processor board can be cascaded with other processor
boards. Each processor board must then generate different addresses to cache.
The connector lists for the processor, cache, and address generator boards
follow in Figures 48 and 49.

The physical configuration of the backplane consists of 9 slots and
three left open for future expansion. Each connector will be placed on a
0.800 inch center to center spacing. The slot assignments are listed next.

Backplane Slot Assignment

Slot Number System Assignment

I I lOP
2 1 PROCESSOR
3 1 EMPTY
4 1 ADDR
5 1 EMPTY
6 1 CACHE MEMORY
7 2 PROCESSOR
8 2 EMPTY
9 2 CACHE MEMORY

Slots 3, 5, and 8 are empty to allow the tall boards to have clearance.

This backplane supports two CPH systems. The two systems share a common
system clock, microsequencer address signals, and power, but all data and
memory address buses are isolated between slots 6 and 7. This allows each
system to access independent memory and data, and even to execute different
microcode with the constraints that both systems have the same microsequencer
generating a common program address.

The clock circuitry for the backplane remains to be designed. The
initial design should support all phases of the CPH clock and should support
single stepping. The single stepping feature can be installed on the
frontplane with a debounce switch and as an alternating TTL signal from the
lOP. The ECL-to-TTL conversion should be done on the backplane.
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I
T018 8 TS CONNEc1•TR LIST FOR TE PROCESBOR BOARD ONlLY. IT DTIB3
FR THE COOLTST2.DOC LISTING. THAT LISTS THE ADORRESS GENERATOR AND
CACHE N3HORY CONNECTOR LIST. THIS CURRENT LIST FOR THE PROCESSOR
DIFFERS BECAUSE EVA 18 CAPABLE OF CASCADING MULTIPLE PROCESSOR BOARDS.EHllCI, RUMH BOARD NUllT BE ISOLATED FROM THE OTHER PROCESSOR BOARDS.

CONNECTOR NET LIST FOR SECTION Pl
PIN UT PIN UT PIN NET PIN UST
£1 VCC 31 VOC 01 VCC D 1 VCC

A2 DATAA115 32 DATABI15 C2 DATAD15 D2 DATAEIIS
A3 DATAIl4 33 DATA1II4 C3 DATAD14 D3 DATAI114
A4 DATAhI13 34 DATAB 13 C4 DATWD13 D4 DATiZ113
AS DATU.A112 a5 DATAI112 C5 DATAD12 D5 DATAZI12
A6 amD 36 OND C6 GiD D6 BUD
A7 DATA£I11 37 DATABIll C7 DATADlI D7 DATADll1
AS DATA£IIO a8 DATAIl0 COS DATADI0 Do DAT1RI0
Ag DATAK19 3g DATABIO C9 DATAD9 Do DATAN19
AI0 DATAAZ8 320 DATABIS C10 DAT.DS DI0 DATAIS
All GBD 311 GND C1l GND Dli BUD
A12 DATAh17 312 DATAB17 C12 DATAD7 D12 DATAI7
A13 DATAK16 B13 DATABI6 C13 DATAD6 D13 DATA16
A14 DATAK15 314 DATABIS C14 DAT-D• D14 DATET15
A15 DATAA14 N15 DATA2I4 CI5 DTAD4 D15 DATJZI4
A16 amD B16 GND C16 BUD Di6 aUD
A17 DATAA13 B17 DATABI3 C17 DATAD3 D17 DATAEI3
A18 DATAAI2 BI3 DATABI2 CIO DATAD2 D18 DATAEI2
A19 DATAKIi B19 DATABIl C19 DATADI D19 DATAKI1
A20 DTAAI10 920 DATABI0 C20 DATADO D20 DATAEI0
A21 BnD 821 GND C21 GND D21 BUD
A22 DATAAR15 B22 DATABRIS C22 DATAC15 D22 DATABERIS
A23 DATAR14 B23 DATABR14 C23 DATAC14 D23 D£TATM14
A24 DATAAR13 324 DATABR13 C24 DATAC13 D24 DATARR13
1,25 DATAAR12 B25 DATARR12 C25 DAThC12 D25 DATARZ12
A26 BUD 326 BUD C26 BUD D26 UND
A27 DATAARII 327 DATAJRIl C27 DATKCIl D27 DATAUMtI
A26 DATAR1O 328 DATARIO C028 DATAClO D28 DATAnR0
A29 DATAhR9 329 DATABR9 C29 DATAC9 D29 DATADR9
A30 DATAAS8 330 DATAESR C30 DATAC9 030 DATARRS
K31 MUD 831 UD3 BUD 031 GBD
A32 DATAJR7 332 DATABR7 C32 DXATVU7 032 DATAIR7
A33 DATAARS 333 DATABRA C33 DATAC6 D33 DATARR6
A34 DATAAR5 334 DATABR5 C34 DATACS D34 DATUIRS
£35 DATAAR4 335 DATABR4 C35 DAT&C4 D35 DSTAX14
A36 BUD 336 BUD C36 Qxv D36 BUD
£37 DATAAR3 337 DATABR3 C37 DATAC3 037 DATAR3
A38 DATAAR2 833 DATABR2 C38 DATAC2 D38 DATAE32
£39 DATAARI 239 DATASRI C39 DATACI D39 DATARR1
A40 DATUM 340 DATARRO C40 DAT1IC0 D40 DATARRO
A41 BU 341 an C41 GBD D41 BUD
A42 VCC 342 VCC C42 VOC D42 VOO

CONNECTOR UIT LIST FPO SECTION P2
PIN UT PIN MNE PIN NUT PIN UT

AZ V- C 31 VCC C- V-C D1 Vic
A2 ADDAC35 32 AD£AC23 C2 ADDAC11 D2 C011
A3 ADDAC34 33 ADDAC22 C3 ADDACO10 D3 C11K3
A4 ADDAC33 94 ADDAC21 C4 ADDAC9 D4 CLK2
AS ADDAC32 35 ADDAC20 CS 0DD008 D5 CLK4
A6 BUD 36 BUD C6 BND D6 BUD
A7 ADDAC31 37 ADDAC19 C7 ADDAC7 D7 CLI
AS 1 ADDAC30 38 ADDAC18 CS A.00C6 Do /CLK
A9 AD1AC29 39 ADDAC17 C9 ADDAC5 D9 /RESNT
AI£ ADDW2i 310 ADDAClE C10 ADD0C4 DIO /C00D
A11 BUD 311 BUD CII aND DII o
A12 ADDAC27 312 ADDACIS C13 ADDJ03 012 ADD00
A13 ADDAC26 313 ADDAC14 c13 ADDAC2 D13 ADD£ 1
A14 ADDAC25 314 ADDAC13 C14 *0DA0M D14 ADm041
A15 ADQAC24 315 ADDACi2 cis ADDACCO 15 D AD=
A16 No 316 ilD ci Un16 BUD
A17 AD£0D35 317 ADD£D23 C17 £D0D030 017 *0014
£i8 ADDBD34 316 ADD£D22 ci8 ADD£D10 D18 ADD01
£I9 ADD£D33 319 ADD£D21 C19 ADDBD9 D19 ADD£ 6
A20 ADD£032 320 ADDBD20 C20 ADD1D03 D20 ADON7
A21 BUD 321 GBU C21 an D21 BUD
A22 ADDBD31 322 AD£BDI9 C22 ADDBD7 D22 AD£014
A23 ADD0D30 323 £0BIlS C23 ADDBD6 D23 AD£49
A24 ADDBD29 B24 ADD£D17 C24 ADD£D5 D24 AD£I410
A25 o0028 3 25 AD£BD316 C25 ADD£D4 D25 ADD*11
A26 BND 326 BND C26 oUD D26 GBD
A27 ADDBD27 327 ADDBDI5 C27 ADD£D3 D27 ADD012
£28 0AD3D26 328 ADDBD14 C28 ADDBD2 D28 AD*H13
A29 AD0D325 929 ADD£D13 C29 ADDADI D29 ADDN14
£30 AD08024 330 ADD0012 C30 A£0030 D30 ADD*0 S
A31 OND 331 BnD C31 BUD D31 BU
A32 DATAAR35 332 DATABR35 C32 DATAC35 D32 DATAZR35
£.33 DATAAR34 B33 DATAR34 C33 DATAC34 D33 DA-TAZ34
A34 DATAAR33 B34 DATABR33 C34 DATAC33 D34 DATAEP.33
A1.5 DATAAR32 835 DATARR32 C35 DATAC32 035 DAT01.232
A36 BND 336 BUD C36 amD :l aUD
A37 DATAR135 837 DATABI35 C37 DATAD35 :.J7 DAT&JI3S
A38 DATAA134 338 DATAB134 C38 DATAD34 038 DATAR134
£39 DATAA133 339 DATAB133 C39 DATAD33 039 DATARI33
A40 DATALZ32 340 DAT&UX32 C40 DATA032 040 DAt2W32

341 GiD C41 amD D41 oil
141 542 VWO C42 Woc D42 WOO

1±gur. 48. Promawor Camorto Llst
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CONNECTOR MET LINT Y03 SECTION P3
PIN MWI PIN MhT PIN NOT PIN EXT

At VOC 31 VOC Cl VCO D1 VOC
A2 D£AT1I31 32 O£TAI3l3 C2 OWISO3l D2 06201131
W3 DATAAI30 33 DATAR130 03 DATAD30 D3 DATAZ130
£4 01201129 34 01213129 C4 DA2AD29 Of VA213129
£5 Dh7XA12O as DATUM12 05 0126028 05 DATAR12S

£7 OATAA127 31 01213127 C7 DAM*27 D7 DATA3127
AG 01216126 3s 0ATA312G 08 012*026 Dos 0121126

k! £11j !0 0T2111245 C2 0*25 09 DAT21125
A10 DATAI AMZ2 IO ATA24010 D121A124

A11 850 311 QON 011 amO 01 anO
A12 DhT1A123 312 01210123 C12 DA2AD23 012 DATART23
£13 DATAA122 313 D1TA3122 C23 DATAD22 013 002A3122
A14 DA21M121 314 DA2AB121 C14 0121021 D14 DATAZ121
£15 DATAA120 315 01210120 015 012120 015 01233120
£16 00D 316 QON CO GUo 016 QUO
A17 01211119 317 DATA8129 C17 0D2119 017 DA2A3119
A11 DATA£II8 318 DA210118 C1O 0121018 018 DA2A3118
£19 012*1117 319 012101 17 019 D121D17 Dig 01213117
£20 002*1116 320 01213116 C20 0120016 020 DA2AZ116
£21 GOD 321 QON C21 Qam 021 anO
A22 D12£*a3A 321 012*3331 C22 0021031 D22 01233331

0132A133 2 ATM30 C23 D121C30 023 01130
£L24 0A21AAR29 324 0A210R29 024 DA2AC29 024 01213329
£25 DATA1R29 325 01230328 C25 0121028 025 01213328

6 N 326 QON C26 M0 026 an
0121ATAA27 327 012*0327 C27 0121037 027 0120337

£20 DATA1326 326 D1A3AR2G 028 DATAC26 028 01213326
£29 0A2AA025 329 DATAMR2 029 012*025 029 01213325
A30 D1TA1324 530 0ATA3M24 030 012*024 030 012 302 4
£31 QON 331 QON 031 QOn 031 GOD
k32 01TA1R23 332 0ATA3R23 C32 DM1AC23 032 DATA3R23
1L33 01211022 333 DATA3R22 C33 012A022 033 DATAZR22
£34 DA211321 334 DATA3R21 034 012*021 034 DA213321
£L35 012AA320 335 012*3320 C35 DATA020 035 012*332
£36 QUO 336 QON 036 QON 036 QON
£37 01211019 337 012*3019 037 DA21019 037 01213319
£34 VAI2A1R1 336 DA*ARRIa 038 D12*018 038 01213318
£L39 00A1A17 339 0D21A317 039 01TAC17 039 DA21317
£40 0MUMS01 340 01213316 C&O 012*016, 040 01213316
£41 am 341 am0 041 amp 043 aIO
£42 VOC 342 VOC C42 Woc 042 VOC

I1igme 48. NamoTc Camnasto List Coutiunad
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PARTIAL LIST FOR BAC7?LAU BITS
DEES PORT E AND SOME CONTROL LINES MUST B3 ADDED WHIM TIMING

DOSIWG C0ON1PITD FOR TUB 3SIO BUS

COMIRC'IOR UT LIST FOR SZCTION PI
PII NET PnI NET PIN NET PIN NET

£1 D£TAXI1S III DATABI25 Ci DATADl D] DAAZ24
£3 DATA114 B3 DATABI14 C3 DATADI4 D DATAX14
A4 DATAh113 34 DATAR113 C4 DATAD13 04 DATAE113
AS DATAM12 3s DATAR112 C5 DATAD12 D5 DATAZ112
A6 ORD B6 OND C6 GND D6 OD
£7 DATAAI11 37 DATABZll C7 DATAD11 D7 DATUAMZI
Al DATAAIlO B3 DATAB110 C8 DATAD10 DOf DATZI10
£9 DATAAI9 39 DATA2ZI C9 DATAD9 D9 DATAX19
AI DATLAIS 310 DATABI8 C10 DATAD8 010 DATARZI
All anD 31l CU Cl CORD DlI CUD
A12 DATAU17 B12 DATABT7 C12 DATAD7 D12 DATAEZ7
A13 DATAk16 B13 DATAB16 C13 DA6ADS D13 DAMAZI6
A14 DATAAI5 314 DATABI5 C14 DATAD5 D14 DATAEZ5
AI5 DATAA14 B15 DATABX4 Cis DATAD4 D15 DATAX14
A16 WmD B16 GND C16 ORD D16 CUD
A17 D£TAAT 3 B17 DATAR13 C17 DATAD3 D17 DATAI3
A18 DATAA12 318 DATABI2 c18 DATAD2 D18 DATAKI2
A19 DATAAI 3 B19 DATAIl C019 DATADI 019 D DATA11
A20 DATRAIO B20 DATABIO C20 DATAD0 D20 DATJXI0
A21 ORD B21 GND C21 CUD D21 CUD
A22 DATUAR15 B22 DATABR15 C22 DATAC15 D22 D0TAER15
A23 DATAAR14 B23 DATABR24 C23 DAITAC14 D23 DATAERl4
A24 DATAAR13 B24 DATABR13 C24 DATAC13 D24 DATM1313
A25 DATAAR12 B25 DATABR12 C25 DATAC12 D25 DATA3R12
A26 CUD B26 ORD C26 ORD D26 ORD
A27 DATAARIl 327 DATABRl C27 DATACl2 D27 DkTAERX1
£28 DATAIRIG B28 DATABX1O C20 DATACIO D28 DATAUR10
A29 DATAAR9 B29 DATABR9 C29 DATAC9 D29 0ATAER9
A30 DAT.AAR 330 DATARS C30 DATAC8 D30 0OT*33
A31 CaD 331 ORD C31 ORD D31 CUD
A33 OATAAR7 332 0ATAAR7 032 DATACT D32 0*1137
A33 DATMAR6 333 DATABR6 C33 DATACG D33 DATAERI
A3 DAiS DATAURS C34 DATACS D34 DATAR•S

0338 DATA04 035 DAT£AR4
A36 ORD 336 anD C36 CUD 036 ORD
A37 DATAAR3 337 DATADR3 C37 DATAC3 D37 DATARR3
A36 DATAAR2 338 DATARR2 C38 DATAC2 D38 DA1A•i2
A39 DATAAR1 339 DATABRI C39 DATAC1 D39 DATLICRI
A40 DATAIRO B40 DATAIRO C4O DATACO D40 D0TAR10
A41 an 41 OUD C41 CND D41 CUD
A42 VCC 342 VCC C42 VcC D42 VOC

COUNECTOR NET LIST YOR SECTION P2
PIN MT PIN NET PIN NET PIN NRT

A1 VCC 8! VOC Cl VCC Dl VOC
A2 32 C2 ADDALll D2 CLK1
A3 D3 C3 ADDCI0 D3 CLK3
A4 34 C4 ADDAC9 D4 CLK2
A5 35 C5 ADDACI DS CL04
A6 QMD B6 CRD C6 CUD D6 ORD
A7 37 C7 ADDAC7 D7 CLK
As B3 c8 ADDACS D0 /OLK
A9 B3 C2 ADDAC5 Dg /RZSET
A10 310 C10 ADDA* 4 DI0 /Coin
All amD 311 ORD Cll OED D01 CUD
A12 B12 ADDAC15 C12 ADDAC3 D12 ADNHO
A13 B13 ADDAC14 C13 ADDAC2 D13 ADMI4
A14 B14 0DDAC13 C14 ADDAI D14 ADOM2
A1S B15 ADDAC12 cis ADOJCO 015 ADD£43
A16 UND 316 m C016 QO 016 CUD
A17 317 C17 ADDBD£3 D17 AD£N44
A18 318 c01 ADD0010 D16 ADDO5
A19 319 C19 ADD009 D19 ADDH6
A20 320 C20 ADD£D3 D20 ADD£ 7
A21 mmO B21 QED C21 ORD 021 ORD
A22 322 C22 ADDBD7 022 ADDHO
A23 323 C23 ADDBD6 D23 ADDM9
A24 324 C24 ADD£DS D24 ADDI410
k25 325 C25 ADD£D4 D25 ADDI411
A26 GQOD 326 UOD C26 ORD 026 GND
A27 327 ADDBD15 C27 ADDBD3 D27 ADDi412
A28 328 ADDBD14 C28 ADD£D2 D28 ADN4413
A29 B29 £0DBD13 C29 ADD£D1 D29 ADDH14
A30 B30 ADDBD12 C30 ADD£D0 D30 AD£0415
A31 ORD B31 ORD C31 OUD D31 CUD
k32 DATAAR35 332 DATABR35 C32 DATAC3S D32 DATARR35
A33 DATARA34 B33 DATABR34 C33 DRTAC34 D33 0*1*3334
A34 DATAAR33 B34 DATABR33 C34 DRTAC33 D34 DJTAMR33
A35 DATAAR32 335 DATABR32 C35 DATAC32 D35 DAT0*L32
£36 OUD 336 ORD C36 CUD D36 anD
£37 DATAAI35 337 DATABr35 C37 DJTAD35 037 DATJUX35
A38 DATAA134 233 0ATAB134 C36 DATAD34 D38 DA.TAX134
JL39 DATA0133 339 DATAR133 C39 DA1£D33 D39 DATAN133
A40 DATAAZ32 340 DATAN132 C40 DATAD32 D40 DATU2132
AJ an "41 GOD C41 oUD D41 aUO

We M'2 VCC C42 VCC D42 Toc

1Fiure 49. Cacb.ddrsess Venerator Comnector Lists
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CO NNCTOR MET LINT FOR aZCTIOa P3Pin 03T PIN MIW Pin MW PIs M
A1 V 31 VCC 01 VCC D1 VCC
A2 DA•IAX31 B2 DAM131 C2 DATAD31 D2 DA.TA131
£3 DATAA130 B3 DATAB 130 C3 DATAD30 D3 DATAX130
A4 DA7AA129 B4 DATAf& 129 C4 DATAD29 D4 DATAZI29
as DATAA129 as DATAB128 05 DAT0D28 D5 DAT£31286 GM1D 36 QO C06 anO D) O)
£7 0&!MX27 37 D&T•S127 C7 DADT27 D7 DA23l127
A8 DATRA126 B3 DATAR126 Ca DATAD26 DO DAMI26
Ag DATAAM25 39 DATAB125 09 DATAD25 Dg DAAUI125
A10 DATUX24 310 DAT0U124 C0O DATAD24 D10 03231124
All QUO 311 Bit 011 UOGD D01 Oi
A12 DATAA123 312 DATAB123 C12 DATAD23 D12 DA•.A123
A13 DATAK122 313 DATA8122 C13 D0T3D22 013 D0A33122
A14 D0A3T121 314 DATA3121 C14 D32hD21 D14 DATAZ121
Ms DATAA12* a3S DATA23120 c15 DA2hD20 Dis IATAR120

A16 UO 316 BIG ON CI 4W D16 QUOA17 DATAA119 317 DATAB319 C17 0AT3U19 D17 DATA02 19A18 DATAA1218 Die 032331 c1s 0323016 016 DAT0J2Z316A19 DATAA117 B19 DATABI17 C19 DA.TAD17 D12 DATAT117
A20 DATA0316 320 DATA116 C20 3AR3D16 D20 DA023316
A21 QUO B21 QOD 021 aQn 021 01DA22 DATAAR31 322 DATA3R31 C22 DATAC31 D22 DATA1R31
A323 DATAM3 323 D3233R30 023 DA3L3C30 D23 03233330A24 D3TA3329 324 DAT2BR29 C24 DATAC29 D24 DATA3R29
A25 D0T32A23 825 DATAB2 M C25 D0T3C26 D25 DATA32328
£26 QUO B26 QOD C26 GMD D26 GED
A27 03233327 227 DA2ABR27 C27 DATAC27 D27 DA0A3R27
A28 DATA3326 B28 DA2TAR26 C28 DATAC26 D28 DATA3R26
A29 DA3A325 29 DATA2M35 C29 DATAC25 029 DA2AZR25A30 DATAAR24 330 DATABR24 C30 D0323C24 030 0323324
A31 QOD 331 UOD C31 QUD 031 UND
A32 DATATR23 332 D0TABR23 C32 DATAC23 032 DATAZR23
£33 DATAA022 B33 DATABR22 C33 DATAC22 033 DATM3322£34 DATAAR21 B34 DAT03321 C34 DATAC21 D34 DATARR21
A35 DA33AR20 335 DA3TAM 0 035 DATAC20 D35 DATA w 0A36 anO 336 QUD C36 aUO D36 amO
A37 DATAAR29 B37 DATABR19 037 DATAC19 D37 DATAR319A38 DATAARI3 33 DATA3RI68 C39 DA0A16 D033 DAT02MI3
A£9 D*TAAR17 339 DATAR317 C39 DATAC17 D39 DA2A13174,O D3M2331 340 T3M2316 e40 ACO16 D40 DA0*M23
£41. an 34 MD C41 ON, D41
&4; We 341 200 042 WCC 042 vCC

IVws 49. Cache/Adres Gemoator Cimmemtor Liots Continumd
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4.0 Microprograin-in the CPS

Microprogram-ing the CPR is done with the microassembler provided using
MicroAsm. Here, a user would develop an assembly level program with the
MicroAsm assembler syntax. A predefined description of the CPH has been
entered into the Genasm files. A typical production of the microcode for the
assembly level application program uses the following command line.

Hicroasm mulm.asm -cph -f

This command line uses the predefined machine definition tables of the cph
file and generates the microcode for the mulm.asm assembly level code. Output
will be in a file labeled as "mulm.ldf".

4.1 Theory of Operation

Generating microprograms for the CPH requires the MICROASM retargetable
microassembler. There are three programs entitled, GENASM, MICROASM, and MPP.
These three executable files should be in the current directory you are
writing the assembly level programs. As an example, the following sequence of
steps are necessary to produce a binary file for the machine. That output
file will have the root name of your source and the extension, "LDF".

4.1.1 Sequence of Steps

To create and assemble a program, two steps are necessary as follows:

1. Create your assembly level program with any text editor.
Save as an ASCII file only.

2. Keystroke the following command line

MICROASM <YOUR FILE NAME.ASM -tCPH -f

This is the entire sequence. This example uses the already developed
tables for the CPR which should be in your directory. The "-f" string tells
MicroAsm to produce a binary output PROM file with the root name of your
assembly program.

4.1.1.1 An Example

On the disk provided are 18 files, including Microasm.exe, Genasm.exe,
MPP.exe, CPH.FIX, MULM.ASM, MULM.LDF, DAFY.FTI, and DAFY.LDF. To produce a
PROM readable file in binary from the MULM.ASM assembly program, type the
following:

MICROASM MULM.ASM -tCPH -f

This command line will assemble the program called MUIM.ASM, using the machine
description found in the CPH.FIX files and produce MULM.LDF. After completing
the steps, examine the MULM.LDF file. It should have four microinstructions
of 768 bits width. The source program, MULMASM, is found in the appendix
along with the MULM.LDF and CPH.FIX machine description file. Verify that the
micro orders in the LDF file agree with your syntax in MULM.ASM.
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4.1.1.2 The LDT files

LDF files are produced by appending in the Microasm command line the
symbols "-f". The output file will have the same root name as the ASH file
but will have the LDF extension. This file is used to produce the PROM words.
This LDF file can be viewed to verify the bits in each microorder selected by
your assembly program. For example, an AAA.LDF. file was created from the
AAA.ASM file in your example section. It is two microinstructions long. The
very first bit in the upper left corner is physical bit 768. The lower
rightmost bit is physical bit 1. The most significant 384 bits represent
phase I microorders in each microinstruction while the least 384 bits
represent the phase 0 microorders. To locate individual fields requires you
to compare the MI format drawing with the LDF file. Be careful. Some of the
fields are spread across isolated physical bits. The immediate address field
is one. ADDRESS RAM1 is another. There is potential for confusion in several
areas. These are clarified in the sections below.

4.1.2.1 Default Bite

In order to avoid having to specify all bits of a microinstruction in
each assembly instruction, default values are specified in the CPH
description. There is a default value for each of the fields as well as for
each subfield of each field. There is also a global default bit value
specified with the defbit directive that is used when the proper default is
not available. Since all fields and subfields in the CPH description have
defaults specified, this global default bit will never be used.

When a field is not specified at all in an instruction (no
$<field_name>), then the default for the entire field is used. If there is no
default for the entire field, the global default bit value is used instead.
When the field is specified but a subfield is left out, either between commas
or at the end, the default for the subfield is used. If there is no default
for the subfield, the global default bit is used again rather than the field
default. Any or all of the subfields can be left out and they will be
replaced with the subfield defaults. For most of the fields, the default
values are the same in the field as in the subfields. The exceptions are the
$CCS, $IMM and $MWR fields. The $SEQ field is also unusual because
assignments to the physical bits have been made from its subfields rather than
the entire field. For that reason, the $SEQ field default has no effect and
the $SEQ field must be specified in an instruction to keep it from getting a
"don't care" value. It need not be given any subfield values, as they will
default to a continue instruction, but a $SEQ must be present. Physical
fields which are not assigned any bit values at all will get "don't care"
values.

4.1.2.2 Imadiate Data

To use the immediate field, it is necessary to specify $IMM or $IMM EN
(DISable is the default value for the field, but ENable is the default value
for the subfield). The data value is held in the $REG field and must be
specified by filling in each of the subfields of the $REG field with the
appropriate number of bits from its binary representation. For example, to
specify the value
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OBOOOO11110000111100001111000011210000

would require

$REG OXO1,0X38,OXOF,0X03,0X3,0X03,0X30

Use only hex or octal format in Microasm. Do not use binary. This is
inconvenient, but the immediate field should not be needed very often anyway.

The immediate address field can also be used to send literal addresses
to the program counter. It is done similarly. For example, the microorder
$ThMADD OxFFFF will emit the bits, OB111II1I11111 in the immediate address
field.

4.1.2.3 CPR RON Format

When assembling microcode for the CPH, the format shown in Figure 50
applies. An MI word is 384-bits long partitioned into 8 ROMs. A single HI is
mapped as shown across several physical devices. Care must be exercised in
downloading the code from the host so that the words map accordingly.

4.2 Algorithms

Severe computational requirements are placed upon WSMR radar and
telemetry installations when multiple sensing and unreliable data acquisition
occurs. Decentralized tracking via the new Square Root Information Filter
(SRIF) offers exceptional promises. SRIFs easily handle sensor misalignment,
adapting to unexpected randomness, and noisy telemetry. The optimal tracker,
however, must be computationally efficient and fast. The tracker must also
correlate multiple objects with measurements, requiring the tracking filter to
be run on different sequences of measurements. To be reliable, the tracker
must be numerically stable under extremely tight real time constraints.
Figure 51 entitled, "Decentralized SRIF Architecture" depicts the typical
processing chain and Figure 52 depicts the distributed/parallel architecture
for combining local processors into the decentralized tracker scheme.

Both the CPH and the VPH boards can serve as the local processor for the
SRIF. Where significant vector operations are required, the VPH excels in
real-time performance. When significant matrix manipulations occur, the CPH
is the better choice. It is anticipated that the major computational task is
the matrix inversion which is highly sensitive to the ill-condition of the
matrix. Matrix ill-conditioning can be quantified by the Mel-Penrose index.
This index is the absolute value of the difference between the largest
eigenvalue and the smallest eigenvalue. In practical terms, this index is i
measure of the difference between the largest energy signal and the smallest
energy signal.

Matrix inversion can be accomplished by LU factorization, Gaussian
elimination, Gram-Schmidt Factorization, Hermitian matrix inversion, and
scaled Givens rotations, general matrix inversion.
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CPH RON FORMAT
Each column represents a single x8 RON

January 
27, 1992 RON DANK RAN

RON 7 RON 6 RON 5 RON 4 RON 3 RON 2 RON I RON 0 ADDR SYSTEM ADOR PHASE ADOR
383..376 375..368 367..3601359..352 351..344 343..336 335..3281327..320 0 -0 0 0

383..376 375..368 367..360 359 352 351..344 343..336 335..328 327..320 1 0 0 5 0

319..312 311..304 303..296 295..288 287..280 279..272 271..264 263..256 2 0 4 0 0
N 319..3121311..304 303..296 295..288 287..280 279..272 271..264 263..256 3 0 4 1 0

T 255..2481247..240 239..232 231..224 223..216 215..208 207..200 199..192 4 0 3 0 0
R
U 255..248 247..240 239..232 231..224 223..216 215..208 207..200 199..192 5 0 3 1 0
C -
T 191..184 183..176 175..168 167..160 159..152 151..144 143..136 135..128 6 0 2 0 0
I -
0 191..184 183..176 175..168 167..160 159..152 151..144 143..136 135..128 7 0 2 1 0
N

127..120119..112 111..104103...96 95 .... 88 87 .... PC 79 .... 72 71 .... 64 8 0 1 0 0

127..120 119..112 111..104 103...96 95 .... 88 87 .... 80 79 .... 72 71 .... 64 9 0 1 1 0

63 .... 56 55....48 47 .... 40 39 .... 32 31 .... 24 23 .... 16 15 ..... 8 7 ...... 0 10 0 0 0 0

63 .... 56155 .... 48 47 .... 40 39 .... 32131 .... 24 23 .... 16 15 .... 8 7 ...... 0 11 0 0 1 0

383..376 375..368 367..360 359..352 351..344 343..336 335..328 327..320 12 0 5 0 1

383..376 375..368 367..360 359..352 351..344 343..336 335..328 327..320 13 0 5 1 1

319..312 311..304 303..296 295..288 287..280 279..272 271..264 263..256 14 0 4 0 1

N 319..312 311..304 303..296 295..288 287..280 279-°272 271..264 263..256 15 0 4 1 1
S-
T 255..248 247..240 239..232 231..224 223..216 215..208 207..200 199..192 16 0 3 0 1
R
U 255..248 247..240 239..232 231..224 223..216 215..208 207..200 199..192 17 0 3 1 1

T 191..184 183..176 175..168 167..160 159..152 11..144 143..136 135..128 18 0 2 0 1

0 191..184 183..176 175..168 167..160 159..152 151..144 143..136 135..128 19 0 2 1 1
N

127..120 119..112 111..104 103...96 95 .... 88 87 .... 80 79 .... 72 71 .... 64 20 0 1 0 11 - _____

127 .120 119..112 111..104 103...96 95 .... 8887 .... 80 79 .... 72 71 .... 64 21 0 1 1 1

63 .... 56 55 .... 48 47 .... 40 39 .... 32 31 .... 24 23 .... 16 15 ..... 8 7 ...... 0 22 0 0 0 1

63 .... 56 55 .... 48147 .... 40 39 .... 32 31 .... 24 23 .... 16 15 .... 8 7 ...... 0 23 0 0 1 1

F:iu-" 50, Cps RK I ormast
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The computational budget for a complete SRIF is the following:

SRIF Computational Budget

Matrix Inversion 40%
Vector Multiplication 26%
Correlation 14%
Numerical Integration 6%
Scalar Manipulation 14%

The major tasks include adaptive tracking, nonlinear filtering, batch
initialization, sensor control, and track correlation. Adaptive tracking can
be accomplished via several methods some of which are listed in Figure 53
entitled "Adaptive Algorithms". They include the LMS, RLS, FLA, FTF, and
SFTF. Note that the LMS is a slow tracker but its computational complexity
(number of equivalent multiplication). The SFTF is fast but its computational
complexity is 4.5 times worse than the LMS. The FTF is not stable. Therefore
it is not suitable for the SRIF or the EVA architecture.

During April 1990, a new algorithm was investigated for the time motion
resolution task at WSMR, because this is a very demanding application and time
consuming to WSMR. It was found that the new algorithm could improve and
enhance signal analysis of signals which are both time and frequency limited
without the need for long windows as is required when using the Fourier
transform. Because this new algorithm, called the Wigner-Ville transform, has
significant improvements over the Fourier transform, an intensive analysis of
its features was made and applied to the CPH. The CPH as currently configured
appears to support this important new discovery.

The Mentor target tracker algorithms (a realization of DSRIF) were also
examined carefully for implementation into either or both the VPH and CPH.
The basic sequence of steps in the computations is as follows:

1. Take measurements (range, rate,...)

2. Execute local filters in parallel

3. Merge 1 at the global level

4. Local filter time update

5. Global merge

However, additional equations need to be computed in order to support steps I
through 5. All matrices appear to be less than 25 x 25 elements in size.
There are no real-time matrix inversion operations. One inversion is needed
at the onset, however. Several orthogonal transformations are needed but
appear to be straightforward. Givens rotations were suggested by Dr. Mitch
Belza for some matrix manipulations.
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4.2.1 Algorlthm for Solving Linear Systeme

STC's design review of the VPH, with respect to providing a full range
of math functions, has yielded a healthy respect of its calculation
capabilities. The VPH has 4 separate calculation units which can run in
parallel, each of which can perform a square root in approximately 1.52
microseconds and a division in less than 1 microsecond. While these figures
are not the fastest figures in the world, they are very respectable when
viewed in the context of the architecture's main function, FFTs, which require
complex multiply accumulates. This speed and flexibility allows the
architecture to provide a wealth of processing speed which can be used for
virtually any mathematical functions which might need to be performed. When
the overall speed of the existing VPH architecture was compared with an
architecture utilizing an additional processing unit such as the BIT chip, the
cost to performance ratio of the speedup was very poor and the possible
enhancement was discarded.

Many different algorithms solve matrix equations, and most of them rely
on triangularizations of the input matrix. Triangularization is invariably
followed by some sort of substitution to find the solution vector. Thus, the
most efficient solutions are those which require the fewest calculations for
their triangularization and subsequent backsubstitution. LU factorization and
Gaussian elimination are now examined since they are important equation
solvers.

4.2.2 LU Factorization

One effective method of solving a linear system Rv-s is to factor the
coefficient matrix R into a product of two triangular matrices. The problem
is then reduced to solving two triangular systems. The LU factorization
produces a lover triangle matrix L, and an upper triangle matrix U, whose
product is the original matrix: LU-R. This factorization is computationally
simple because it consists primarily of inner product calculations. Once a
factorization is found, the solution is simply a set of backsubstitutions.

In recent years, the LU decomposition has not received much attention,
both because it is not very suitable for systolic array implementation, and
because it is already so well known. However, because so much is known about
it, and since the proposed implementation is a pipeline rather than an array,
the LU algorithm appears to be the best solution.

4.2.3 Gauiwlan Elimination

Despite origins that date from at least 250 B.C., elimination methods
are still viable as solution vehicles for linear equations. Gaussian
elimination is widely know, being the primary method taught in introductory
linear systems courses. The algorithm consists of a series of row
interchanges (called pivots), combined with subtraction of matrix elements.
It forms an upper triangle matrix by eliminating elements in the lower
triangle of the coefficient matrix. The computational complexity of Gaussian
elimination is identical to that of LU decomposition; in fact, if a specific
pivoting strategy is followed, both methods will compute with the same
accuracy.
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4.2.4 Grami-Sl-Idt Decopoaition

Another elimination method is the Gram-Schmidt algorithm which performs
a Cholesky factorization on Hermitian positive-semidefinite matrices. Since a
spatially distributed covariance matrix is Hermitian and positive-
semidefinite, Gram-Schmidt is a valid algorithm for consideration. Since it
is an elimination method, Gram-Schmidt operates like Gaussian elimination,
first producing an upper triangle matrix, and then backsubstituting to find V.
Unlike standard Cholesky factorization, the Gram-Schmidt method requires no
square root calculations.

By 1990, researchers designed an array processor for adaptive
beamforming based on the Gram-Schmidt algorithm. They replaced the reciprocal
calculation with a shift, essentially the reciprocal of the nearest power of
two. While this method avoids division, it solves a perturbed set of
equations. Others were able to eliminate the divisions without disturbing the
equations by generalizing the Gram-Schmidt method. Unfortunately, their
method of eliminating the reciprocal tripled the number of multiplications.

4.2.5 Inversiou of a Beruitian Matrix

Similar to the LU decomposition, inversion of a Hermitian matrix is much
easier than inversion of an arbitrary matrix. First the matrix is
triangularized, then the new matrix is formed by backsolving. The main
difference between LU decomposition and Hermitian matrix inversion is the
method of backsubstitution. Whereas LU decomposition reduces a triangular
matrix down to a vector with O(N2) operations, the symmetric inversion expands
a triangle matrix back to a full square matrix with 0(N3) operations.

4.2.6 Scaled Givens Rotations

Despite a somewhat higher computational complexity, scaled Givens
rotations have received much attention. The main advantages of this algorithm
are:

1. easy implementation with a variety of parallel structures
2. flexibility to perform several matrix operations (e.g. singular value

decomposition, diagonalization, and triangularization)
3. ability to compute plane rotations without square roots, and with

half the multiplications of standard Givens rotations
4. high efficiency for sparse matrix operations
5. amenable to recursive least squares minimization techniques

Since these advantages have little effect on the solution of linear
equations, we conclude that Givens rotations are more suitable for
calculations other than a linear solution.

4.2.7 Comparison of Alorithm

Though all of the algorithms perform essentially the same operation, a
determination of weight vector w, they are not equal in complexity. Table 1
gives a comparison of the number of operations (real multiplies, reciprocals,
and additions) needed for each of the methods.
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Tsble 1. caqmpleLty of Solutions to Simultaneua Ilquatian

Algorithm Number of Operations Total for N-32

Multi 2/3 g3 + 532 - 7/3 N 27,040
Factorization Recipe N 32

Add: 2/3 U3 + 4X2 - 2/3 X 25,920

Gaussian . ults 2/3 3 + 532 - 7/3 N 27,040
EliminattionI Reolpi N 32

Add: 2/3 3 + 402 - 2/3 N 25,920

GCram- ult: 2N3 + 2N2 - 4N 67.456
Schmidt 2 (613 W -2N- 4N) (194,432)
Factorisation Recip: N 32
(and Dovisio3- (0) (0)
Free Versions) Add: 2N3 * 22 - 4N 67,456

(4N3 -4N4) (130,944)

Inversion Multi 2N3 * 11/2 N2 +3/2 N 71,216
of Her•itian Recip: N 32
matri" Add: 2N• d 4:2 - 23 69,568

Scaled Gisenrs Multi 8/3 N3 * 105/6 32 .89/6 N 105,776
Rotations Recip: 1/2 32 - 1/2 N 496

Add: 8/3 N° 3 1232 + 28/3 3 99,968

General Mult: 29/6 H3 + 3112 - 53/6 N * 5 161,173
Natrix Reolpi. X 32
Inversion1  Add: 29/6 N3 - 232 - 11/6 N * 5 156,277
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Table I shows the computational superiority of the LU factorization and
Gaussian elimination methods, in terms of multiplications and additions. If
reduction of divisions is the primary goal, then one of the Gram-Schmidt
algorithms should be used. One can also see that matrix inversion is the most
complex, and therefore the least desirable of the methods.

Because LU factorization is the fastest of the algorithms, and because
Maron shows that it is easier to implement than Gaussian elimination, use of
LU factorization is suggested. Our studies show that LU factorization is
computationally simpler than other methods, and other publications recommend
it as the optimum algorithm for solutions of simultaneous equations. For
those reasons, implementations research currently focuses on efficient
circuits for LU factorization.

Table 2 compares several least-squares computational techniques. The
normal equations, Householder, Golub factorizations, standard Givens rotation,
fast Givens rotation, scaled Givens rotation, and Gram-Schmidt methods are
considered. Either the normal equations or the Householder Golub techniques
require global communications. Additionally, these two techniques are
sensitive to ill-conditioned matrices. Hence, the normal equations or the
Householder Golub method are not amenable to systolic implementation. The
Gram-Schmidt method, included for completeness, is not recursive and,
therefore, is not considered for systolic implementation.

The remaining methods are based on the Givens rotation triangular
decomposition. The standard Givens rotation requires pivoting as well as
square-root computation. This slows the computation on systolic arrays. The
square-root free Givens rotation eliminates the square-root computation but
still requires pivoting. The scaled Givens rotation eliminates both the
square-root computation and pivoting. Additionally, the scaled Givens
rotation operates on matrix bands. It is not necessary to perform any
computation on bands that contain only null elements. A computational savings
is realized if the data matrix is in banded form. Note that the square-root
free and scaled Givens rotations require half as many multiplies as the
standard Givens rotation. The scaled Givens rotation only requires I division
operation as opposed to 2 in the square-root free rotation. Apparently the
scaled Givens rotation is superior to the other methods studied both in terms
of computation speed and systolic implementation complexity.
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Table 2. Weighted Least Squatva Cqaputatlamal Methods

I ---- Triansular Decompositions----I
Normal House- Standard Fast Scaled Gram-
Equa- Holder Givens Givens Givens Schmidt
tions Golub Rotations Rotations Rotations

Systolic Non- Requires Yes, but is If No Not
Amenable nearest global slow and factored pivots recur-

neighbor comm processor V- free and sive
data complex operation, /- free
paths recursive nearest nearest

separate neighbor neighbor
back-sub- pivoting corn
stitution increases
systolic data flow
array complexity

Additions/
Subtractions

Hult./Stage N N/2 N/2

Div./State 2 1

Shifts/Im Scal. Scal. Complex Complex 2
Compl. Compl.

Latency r+c+l

Stable Sensitive to Matrix Yes Equiv. to Well
Ill-Condition Number Standard Cond.

Givens

Pivoting 2x1 2xl None
Vector Vector

Fading Complex Complex Complex Simple Simple
Signal
Capacity
(Weighted)

Row Complex Complex Complex Complex Simple
Removal

Idle N/2 N/2 N/2
Processors

Computation 2r+c+l 3m+ lo(m+z)
Time 3(q-l)+z+!

Number of c(r+l)/2 q(w+z) O(w 2 +zv)
Processors

Table Notation: r -rows of rectilinear matrix, c - colus of rectilinear
matrix, n - word length
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4.2.8 YPH MFe.

A description of the FFT implemented on the VPH is now described. It
serves as an introduction to the I/O compute overlap capabilities of the VPH
and should be carefully studied. It will serve as the benchmark training
program for the VPH. Hence, a full understanding of its operation is useful
for future code development.

A 1024 point complex FFT is an ideal application for the VPH board. The
Zoran DSP chips have the FFT coefficients in ROM for up to that size. In
addition, a 1024 point FFT can be decomposed into two waves of thirty-two 32
point FFTs, each wave performing five of the ten passes required. Though the
chips are capable of 64 point FFTs in a single instruction, processing 32
points at a time is more efficient when multiple FFTs are required. This is
due to the ability of the chips to process data in half of the on-board RAM
while transferring data between external memory and the other half of the on-
board RAM. Since storing processed data and loading new data takes less than
half the time that an FFT operation does, they can effectively be done for
free even when sharing a bus between two chips working on the problem
simultaneously.

The problem is very amenable to parallel use of all four DSP chips at
once. Each chip can perform eight of the thirty-two FFT operations in each
wave. The only time synchronization is needed between the processors is
between waves. During each wave, each processor works with a distinct subset
of the points. However, the points have to be redistributed among the
processors between waves, so it is necessary to ensure that all of them finish
the first wave before the second one starts. This inherent parallelism in the
algorithm means that there is very little overhead required. The initial load
and final store operations cannot be pipelined with the FFT operation and the
parallel version has four times as many of these. They will also occur at
almost the same time for the two processors sharing a bus, resulting in half
the speed. These factors should have only about a 101 effect on the execution
time. The VPH board should therefore be able to perform a 1024 point FFT
almost four times as fast as a system with a single Zoran DSP chip.

The actual code works as follows. First the processors clear their
semaphore flags to indicate that they are working. They then load their mode
register with values that indicate that the internal RAM is to be divided into
two banks and that bank references are to be inverted each time the loop
counter is decremented. Then the two index register are set to point to the
locations for incoming and outgoing data. In the current code, the first wave
is done in place so they point to the same locations. A single index register
could be used, but using both makes it easier to change to using a different
location for the outgoing data if desired. The index registers on each
processor are initialized to values offset by eight from the previous
processor. This allows for each processor performing eight FFTs. The loop
counter register is initialized to perform the seven fully pipelined
iterations. The first set of data points are loaded from locations spaced 32
elements apart, as required by the FFT algorithm being used when the input
data is in sequential order. Each subsequent set of data points will be
loaded from a location one element after this one, so that after eight sets on
each processor, all points will have been processed. Seven of the eight sets
are handled in a loop that loads a set into the unused RAM bank, starts an
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FFT, and then begins storing the results from the previous bank. After the
loop, the final data set is stored. Outgoing data is stored in bit-reversed
order to compensate for the reversal that occurs during the PFT calculation.

When each processor finishes the first wave, it uses one of its status
bits to indicate that fact. The 68020 or one of the DSP chips designated to
be master performs a full or partial handshaking operation using one of its
own status bits to synchronize the end of the first wave and the start of the
second. In the second wave, the FFTs are performed on sets of 32 adjacent
elements. Each DSP chip again handles eight adjacent sets. The output
results must be put in a separate output area this time because they are
stored with a spacing of 32 again, instead of the spacing of one that the
input is loaded from. This change in spacing performs a bit-reversal between
the bits used to index the first and second waves, just as reversing each of
the blocks during the store operations performs a bit-reversal of the index
within a wave. This results in the output being in normal order instead of
bit-reversed order. Each set is processed with an offset into the coefficient
table to provide the correct value to account for it being part of a larger
PFT. With these differences, the second wave is performed in the same manner
as the first. When all processors indicate that they are finished with the
second wave, the 1024 point PFT is complete.

The entire operation should take 133 clock cycles for the initial load
and final store of each wave, doubled for the bus sharing, plus 334 cycles for
each 32 point FFT. Allowing some extra time for synchronization, the entire
FFT should take around 475 microseconds with a 25 MHz clock. This compares
with a benchmark from Zoran of 1732 microseconds for a single chip.

4.2.9 YE! Softmwe Conventimo

In order to allow the software modules on the VPH board to work together
properly, conventions must be established for their interaction. This is
particularly important because the VPH has multiple processing elements that
need to interact. The board provides a number of mechanisms for counnuication
between these elements. Setting conventions for how they will be used is
necessary for consistency.

VPH Resources

The processing elements on the VPH board are four Zoran VSP (Vector
Signal Processor) chips and a Motorola 68020 microprocessor. A VME bus
interface also allows an external processor to access the board.

There are two types of shared memory on the board. There are two local
buses with two of the four VSP chips attached to each. Local memory on each
bus is shared between the two VSPs that are attached to it. The VSP bus
protocol allows bus locking to provide the mutual exclusion necessary to use
the local memory for interprocessor communication. Each local VSP bus also
has access to a four port memory shared by all the processors.

The 68020 has access to all system resources. This includes the local
memories on the VSP buses and registers and control locations inside the VSP
chips themselves. It cannot lock the local buses, but proper use of the VSP
control locations should allow an equivalent ability. The 68020 can also
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interrupt the VSP chips. With an appropriate interrupt routine, that allows
the 68020 to preempt the buses as well.

There is also a status latch accessible by all processors. Each can
write to two bits of the latch and read the other processors' bits from the
latch. This does not provide any capabilities beyond those available through
shared memory, though it is more convenient to use. In particular, it does
not provide a mechanism for implementing true semaphores to control access to
other resources.

Uses of Resources

The resources on the VPH are not sufficient to allow completely general
synchronization of parallel tasks running on different processors without
considerable overhead. However, they are adequate for the algorithms that are
expected to execute on the VPH. Most of these algorithms will involve
splitting up a task into almost identical subtasks, each of which will be
executed on one of the VSP chips. All working VSPs will therefore need
synchronization at the same points in their subtasks. This can be performed
by using the status register and designating one of the processors as a
synchronization arbitrator. In order to maintain the symmetry between the
VSP chips, the 68020 will act in that capacity. This may not be the best
choice for future use, since the 68020 may have other tasks to perform, but it
is adequate for the present. One of the status bits for each VSP will be set
to indicate that it is finished with its last assigned task. The other will
be used to synchronize the VSPs by a full handshake with the 68020. This use
of the second bit is not strictly necessary, since the same effect could be
achieved by ending a task every time synchronization is needed. For the
initial algorithms being written, this would probably be adequate. Only the
FFTs need such synchronization and they only need it once. However, some
future algorithms might need multiple synchronization points and the overhead
of restarting the processors after each one might become excessive. Another
possible method of synchronizing would be the use of the SYNC:(XE] instruction
with a write to the $CAW location on each chip.

The bus lock on the shared local bus gives the shared local memories the
most powerful communication mechanism. Their limitation is that they can only
be used between the processors that share them. This is not useful for the
global communication required by the algorithms being executed. Therefore
this capability will not be used. The VSP chips will share code and static
tables in these memories, but not data. Each one will maintain its own
private data area. For simplicity, each will be preallocated a run-time stack
area from which it can allocate storage.

The ability of the 68020 to access the VSP memories and registers can be
used to communicate parameters such as the size and location of data to be
processed. These parameters will allow for more functionality and for the
slight differences in the tasks performed by each processor without any
duplication of code. Placing such parameters directly into the VSP registers
would give tiny performance improvements, but this is unlikely to justify the
added complexity in the 68020 code. It does give the 68020 the ability to
invoke subroutines that were written to expect parameters in registers without
needing a separate version that performs the same task using parameters on the
stack.
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The parameters should be passed to each VSP by constructing a call frame
on its run-time stack. The $SP register and $PC register must be set to the
correct values so that it appears that a call has just been made. This will
allow the same routine to be invoked from the 68020 or called by the VSP
directly as part of another task. Making the call frame compatible with the
Zoran library conventions will allow that code to be used wben a single VSP
chip is sufficient. In many cases, parallelism may be coarse enough that
standard library functions can even be used as part of a subtask. For
example, a dot product can be performed by four dot products on one fourth of
the vector length, followed by summing the results.

In order to allow routines to act as both subroutines and main routines
invoked by the 68020, the operations on the finished bits in the status latch
must not be contained in the routines. The 68020 can reset the bits before
starting execution by writing appropriate instructions into the VSP chips'
instruction FIFOs while they are still in slave mode. The setting of the
finished bits and halting of the VSPs can be performed by setting the return
location in the constructed call frame to the beginning of a routine to
perform those functions. The final return will cause the VSP to execute those
instructions after completion of the main routine.

If a routine is going to be invoked repeatedly and it doesn't modify any
of its parameters, the same stack frame can be used again. The parameters are
still on the stack after the return. If interrupts are disabled, the return
value is still on the stack as well. Otherwise it may have been written over
by an interrupt after the return and before halting and will have to be
"pushed" back on. If there are only a small number of sets of parameters
needed and each routine needs minimal stack space, it would be possible to set
up all necessary run-time stacks beforehand and select one simply by setting
the $SP register to point to it. If the routines use too much stack space to
allow dividing up local memory in this fashion, a data area pointer could be
included in the stack frames to be used for allocation instead of the stack
pointer.

The most useful shared memory is the 4 port SEAM, since it can be
accessed by multiple processors simultaneously. For many algorithms it may be
used for all signal data, with processed data being moved out from one buffer
and replaced with new data while processing is performed on data in another
buffer. The 4 port memory is relatively small, however. It only has room for
two sets of 1k complex points. Two sets are adequate for buffering if the
algorithm can be performed in place. The 32x32 2D FFT can be performed in
place, but the 1k M cannot. With multiple data sets, a slower version of
the 1k FFT that can be performed in place by using an extra reordering pass
would probably allow greater overall throughput. Algorithms that use large
data sets should be written to allow in-place operation when possible.

Invocation Conventions

The conventions for the use of the hardware determine the mechanisms
available for comunnicating between software on different processors. The
Zoran library calling conventions place further constraints on the format of
VSP parameters being passed and the saving and restoring of VSP registers. In
some cases where performance is particularly important, it may be useful to
optimize the general calling sequence. Appendix C of the Zoran Software
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Development Tools Manual details the calling sequence and possible
optimizations. For the early demonstration code, a caller save convention is
likely to be more efficient than the standard callee save. There may be no
real subroutine calls at all and saving registers in code that is effectively
the main routine when it is invoked by the 68020 is wasteful. Directives in
the assembly code should make it easy to change to the standard convention if
desired later. Using registers to pass parameters is another possible
optimization.

Further conventions could guide the choice of what data to send in
parameters. One of the biggest issues concerns the division of effort between
the 68020 and the VSP chips. The VSP code may require values derived from the
logical parameters. These could be supplied directly by the 68020 or
determined by the VSP chips themselves. In particular, sharing a task between
multiple VSP chips requires that each perform a different subtask. They could
all be given identical task parameters along with a chip number and figure out
for themselves what subtask they are to perform. Alternatively, each could be
given different parameters determined by the 68020 to define its exact
subtask. There are advantages to each approach that must be considered before
making a choice.

Passing task parameters and chip numbers allows the 68020 to ignore the
internal operation of the VSP algorithms. If the subtasks are changed, the
68020 code to invoke the task can still remain the same. If the VSP
algorithms are invoked by a 68020 subroutine with the same parameters, it may
be possible to copy the task parameters directly from the 68020 stack to the
VSP stacks. Such a set of subroutines could be used to allow execution of VSP
code to be transparent to a 68020 programmer, much like a remote procedure
call. All of these subroutines could call a single subroutine to copy the
stack frames instead of needing to perform task specific calculations.
Calculation of subtask parameters would be performed simultaneously on each
VSP chip, rather than serially on the 68020.

On the other hand, the 68020 instruction 6et is much more convenient fur
performing some of these calculations, and there is an assew.ler available to
make it even more so. Being able to perform them in one place would make some
of the calculations themselves simpler as well. The calculations could be
done once and reused instead of redoing them every time the VSP code is
invoked. The 68020 code could gain more functionality from the VSP code by
combining VSP subtask primitives in more than one way. The standard Zoran
library functions could be invoked directly to perform subtasks rather than
having to be called indirectly from VSP routines that first determine the
correct parameters. This saves calling overhead. By controlling the task
division, the 68020 could assign differing numbers of VSP chips to a task to
allow performance of multiple tasks at the same time. This would be
constrained by the lack of general communication capabilities, but might be
useful in some cases. It would also allow re-division of tasks to provide
fault tolerance in the event of a VSP subsystem failure. These re-divisions
would be less flexible and more awkward to implement with the other method.
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Other Conventions

Some instruction parameters like ROM and first pass separation (FPS) are
hardwired into instructions with no apparent way to set them from a parameter
register. ROM needs to be set to different values for different subtasks in a
large FFT. FPS, LPS (last pass separation) and ROM need to be set to
different values for a single routine to be able to handle different sized
FFTs. It may be possible to get the effect of one of FPS and LPS equal to 1
with the other less than 16 by using an appropriate $REPEAT and $NMPT
combination. The problem of needing different values for different subtasks
could be solved by having separate code for each subtask or by executing code
conditionally based on an input parameter such as chip number. It is unclear
whether the latter can be performed without multiple tests by using the ADDR
instruction for a vectored jump. The problem of setting instruction
parameters from an input parameter would be difficult to solve using self-
modifying code because the only operations that can be performed on full word
width data are floating-point. If a task only uses a routine with a single
value for an instruction, the 68020 can modify the instruction appropriately
before invoking the task. An initial ROM value can also be sent to a routine
by executing an FFT instruction with that ROM value beforehand and using pre-
addition or subtraction mode to "access" it. Some method needs to be decided
upon if very general purpose FFT routines are to be used.

A smaller problem of the same type is that the $MBSMSS register can't
be used with partial bit reversal loads and stores the way the lMBS and MSS
parameters in instructions can. This can be solved by using the same methods
used for the parameters that don't have registers, or by using extra
instructions to get the desired reversals.

Conventions also need Lo be established for modifying special registers
which affect the operation of the machine. The interrupt masks for arithmetic
exceptions should not be modified by the VSP routines so that the 68020 can
decide the level of error checking being performed. Some of the $MODE bits
need to be modified by specific routines to get desired modes of operation.
Some may need to have a particular value at all times. Others may need to
remain at a value determined by the 68020 for reasons similar to the
interrupt masks. If so, then all modifications to $MODE must be made by
masking instead of loading. Some method of handling interrupts when they
occur also needs to be determined. Many more such decisions will undoubtedly
arise during system development.

Implementation Notes

Having the 68020 start the VSP chips one at a time executing application
code presents many alternatives. Since most applications start vector loads
early In the code, the 68020 may have difficulty getting the bus to start the
second VSP chip on each bus. This will delay getting some of the chips
started. With a start pattern that first starts one chip on each bus, this
can be minimized but may still be significant. It would also be convenient
for debugging under manual control if the application were started by a single
event. For this reason, each VSP chip will be stwzed in a polling loop and
wait for a status bit from the 68020 to be set as the signal to proceed to the
application code.
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Just as with the setting of the finished bits at the end of the
application, this synchronization should not be included in any of the
application subroutines. The polling loop should be separate from them.
There are two ways this can be accomplished. One is for the polling routine
to end with a jump to the start of the application. The other is to add the
starting address of the application to the bottom of the stack, start the
stack pointer one lower, and perform a return instruction to get to the
desired application. This is better because it simply requires adding to the
artificial stack frame that must already be prepared rather than modifying a
jump instruction in the polling routine. The same polling routine can be used
for different applications. The same routine can also be used even if the two
VSP chips sharing it must start at different addresses.

Here is the necessary starting procedure. Each VSP chip is assigned a
stack area. This is initialized by "pushing" the start address of the FINISH
routine, followed by any parameters being passed to the application, followed
by the start address of the application. The $SP register of each VSP chip is
set to point to the address below the end of the stack. The 68020 status bit
used for starting is set false. Each VSP is started executing from the
beginning of the START routine. When the start bit is set true, all of the
VSP chips will exit the polling loop in START. They will "return" to the
application code. When the application is done, they will "return" to the
routine that sets the VSP status bits to indicate that they are finished and
halt.
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5.0 HieroAsm

A study was made of several commercially available micro assembler
packages. Previous reports have referenced HALE (Hilevel Assembly Language
Environment) and compared it to MicroASM. The following is a comparison of
the MicroASM system and another popular microassembler - the Microtec Meta29M
2900 Macro Meta Assembler.

Meta29M was developed primarily for the AMD 2900 series
microprogrammable microprocessors and thus is really aimed at different
problems than MicroASM, however it is representative of most microassemblers
available today. Like MicroASM, it utilizes a two-stage system consisting of
a Definition phase and an Assembly phase.

The Definition phase allows instruction mnemonics and their associated
formats to be defined along with constants and reserved symbolic names. The
Definition program checks the definitions for validity and issues error
messages when errors are found. The Definition program features conditional
assembly directives, complex expression evaluation and a cross reference table
listing.

The Assembly phase is a two-pass program that builds a symbol table,
issues error messages, produces an easily read program listing and symbol
table, and generates an object module. The Assembly program also features
conditional assembly directives, complex expression evaluation, and a cross
reference table listing.

Meta29M supports a macro facility. Through the use of macros, variable
length microwords may be defined, fields may be broken up into non-contiguous
bit patterns, and single mnemonics may be used to represent complex overlayed
instruction formats. Conditional assembly statements may be used in
conjunction with macros to implement multi-purpose macros. Macros may be
recursive and may be redefined at any point in the program.

There are, however, some serious limitations to Meta29M that make it
inappropriate for architectures such as the CPH and wide microword
architectures in general. The Meta29M Definition language is really nothing
more than a simple macro language consisting primarily of the "EQU" and "DEF"
directives. These are used in the following manner:

ABAT: EQU H#50 ;Define a constant ABAT - 50 hex

ADD: DEF H#5,ABAT,4VH# ;Define an instruction mnemonic ADD

Note that all mnemonics are globally defined - that is a mnemonic may be
used in only one context. While this may be sufficient for microprocessors,
it is a serious limitation in wide instruction word architectures where it is
not uncommon to have in excess of 1024 instruction bits and multiple similar
fields for similar resource control (say several identical multipliers). In
these situations it is convenient to have identical mnemonics for each similar
resource with no conflicts. In addition, wide-word architectures are
typically "field-oriented" where the instructions are logically broken into
fields for ease of programming. Thus an ADD may be accomplished in any number
of ways using any number of resources (i.e., there may be multiple ADDs in
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multiple fields). A simple macroing scheme is inadequate to this task.

MicroASM begins with the concept of logical fields. Any logical field
may have any number or level of subfields. Mnemonics defined for any field
(or subfield) are local to that field and may therefore be used in any number
of different contexts without ambiguity. Logical fields are then mapped to
the actual physical fields of the microword. This may be as simple as a
direct one-to-one relationship or a complex relationship involving any number
of logical fields. It should be noted that Meta29M also supports complex
expressions for mnemonic definitions, however these expressions are limited in
that they cannot use parentheses, cannot directly reference a "field" and
support a very limited set operators. MicroASM supports the complete set of
ANSI C language operators (arithmetic, logical and bitwise) with the addition
of three MicroASM specific operators (EITHER, CAT and PARITY).

One of the more serious limitations of Meta29M is that it does not
support polyphase system clocks, which are increasingly common in
multiprocessor parallel architectures. Specifically the CPH uses a two-phase
system clock, and thus cannot make use of an assembler like Meta29M.

MicroASM's definition stage actually defines the fields in the microword
and constructs all of the necessary symbol tables for the Assembly phase.
This allows the Assembly phase to execute far quicker than a system where the
symbol tables must be constructed at run time. Also, MicroASM uses a macro
preprocessor which allows conditional assembly as well as complete macro
capabilities. Another capability provided by the MicroASM preprocessor and
not supported by Meta29M is the ability to "include" other source files at
assembly time. This allows the user much greater flexibility in source file
control - i.e., all constants may be placed in a single "include" file and
used with any number of other source files.

Another important feature not supported by Meta29M is the automatic
support of different number formats. While both Meta29M and MicroASM allow
the specification of numbers in Binary, Octal, Decimal and Hexadecimal,
MicroASM also allows the specification of floating-point numbers in IEEE
single and double precision as well as DEC F and DEC G formats. In addition,
MicroASM supports a Pragma to specify whether numbers are big endian or little
endian (see Section 4.6 of this report). Another important feature support by
MicroASM alone is the "PARITY" field operator whereby any physical field may
be mapped as the parity of any combination of logical fields. This is
increasingly important for the efficient programming of fault tolerant
architectures. Specifically, the CPH uses parity for memory checking, thus
this feature is important.

Finally the level of error checking that is possible with MicroASM is a
significant improvement over Meta29M which can only check to see that the
final value of the microword is the proper length and that the internal
Keta29M syntax has not been violated. MicroASM can detect fields that are
referenced in the wrong phase, or for the wrong number of phases. It can
enforce specific latency times for different fields or mnemonics. It allows
the definition of default values at any level and even warns the user of
suspicious activity (i.e., using a decimal number to define a mnemonic - not
illegal but certainly uncommon).
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5.1 Overview

The MicroASM system consists of two programs. GENASM generates the
symbol tables specific to each micro-architecture that is defined using the
MicroASM definition language. GERASM compiles this language and populates the
symbol tables. MICROASM uses the symbol tables to assemble code that uses the
mnemonics and logical fields defined and compiled by GENASM.

5.2 ASM Program - Definition of icro•oard Fields and Mnemmice

The central concept of MicroASM is the idea of Logical Fields and
Physical Fields. Logical fields are fields defined by the microprogramser and
are actually referenced in the micro-assembly code itself. Physical fields
represent the actual physical segments of the microword. The definition phase
of MicroASM involves defining the Logical fields, subfields and mnemonics that
conceptually describe the underlying hardware and then mapping these Logical
fields to the Physical fields. This is done by using the MicroASM definition
language which is compiled by the GENASM program to produce the tables
required by the MICROASM micro-assembler program.

5.3 NlcroASK Definition Language

The GENASM definition language is designed as a structured, block
oriented language in the spirit of C. In fact actual C syntax is used for
some definition syntax. This languae s is completely position ependent and
all white space is ignored by the compiler thus easily readable programming
"styles" are encouraged but not enforced. This language essentially does two
things: it allows the definition of Logical fields, along with their
associated subfields and mnemonics with no concern as to the "physical
position" of the fields, and them allows :he mapping of these Logical fields
onto the actual physical microword.

5.3.1 AM Case Sensitivity

GENASM can compile the definition language either case sensitive using a
command line switch (-c) or case insensitive (default). lhaen in case
senaitive wode, nothing is translated and all keywords are defined in lower
case. When in case insensitive mode all characters are converted to lower
case.

5.3.2 Commnts

Comments in GENASM (and MICROASM) are delimited exactly the same as they
are in the C language: Comments begin with /* and end with */. Any other
character sequences including new lines or carriage returns are acceptable as
coments within the delimiters and are simply ignored at compile or assembly
time. Besting of comments is not allowed.

Example: /* This is a comment */

/* This is also a comment that
ends down here. *1
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4 5.3.3 Numerical Values

Any numerical value associated with the MicroASM definition phase will
always be an unsigned integer. The definition language supports four common
number bases, binary, octal, decimal and hexadecimal. For octal, decimal and
hexadecimal numbers the specification is identical to that used by the C
language, binary numbers are specified in a similar, consistent manner. The
syntax for specification of each is as follows:

BinEry: Obbin num where bin-num is any valid binary number (i.e., each digit
must be either a 0 or a 1) prefixed by Ob. Example: Obli011

Octal: Soct num where oct num is any valid octal number (i.e., each digit must
be between 0 and 7) prefixed by 0. Example: 0642
Decimal: dec num where dec num is any valid decimal number (i.e., each digit
must be between 0 and 9) NOT prefixed by 0. Example: 642

Hezadecimal: Oxhex num where hex num is any valid hexadecimal number (i.e.,
each digit must be between 0 and 9 or between A and F) prefixed by Ox.
Example: 0x642A

5.3.4 Definition of Global Parameters

In any MicroASM definition there are three global parameters: vidth,
phases, and defbit.

width specifies the actual width in bits of the physical microword using the
following syntax:

width = num

where num is an integer (between I and 232) in any of the acceptable number
bases. Failure to specify microword width results in an error.

defbit specifies the default bit value to be used whenever a value is not
explicitly specified for any field. The specification syntax is as follows:

defbit - num

where num is either 0 or 1 in any of the acceptable number bases. defbit is
optional, but there is NO DEFAULT VALUE. Thus if defbit is omitted, any
unspecified bits in the assembly phase will generate an error. To aid in
program debugging, a warning is generated each time the global defbit value is
used automatically.

5.3.5 Logical Field Definition

A logical field is a segment of a microword that may be named to reflect
its nature - i.e., "ALU I" or "SEQUENCER". A logical field may have
associated with it mnemonics, and a default value that is implied whenever the
field is active but no value is explicitly assigned to it. A logical field
may also have any number of nested subfields - each with their own mnemonics
and defaults. In addition a logical field (or subfield) may be defined to be
"active" for a specified number of clock phases. The syntax for logical field
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definitions is as follows:

fieldname I [(fid width] #act_phasesl
fieldname_2 [fld_width] #act phaaes2

fieldnamen [fld width] #act phasesn
{

field definition - subfields and mnemonics
}

fieldnames are valid unique identifiers (relative to their parent block). The
syntax of multiple fieldnames is used to specify fields, probably mapped to
different parts of the physical microword, that have the same subfields and
mnemonics without havina to duplicate the entire field definition. fld width
is an integer (between I and 232) in any of the acceptable number-bases
delimited by square braces "C" and "]". Note that the sum of the widths of
all children fields must be less than or equal to the width of the parent
field.

The syntax for logical subfield definitions is identical to parent field
definitions - i.e., all field definitions are identical. The only difference
is that subfields are defined within the parent field's definition block.

Note that the logical "position" or "offset" within the parent field is
determined by the order in which the subfield is defined. This is important
in that when mnemonics are specified in MICROASM (the assembly phase) the
order of fields referenced are determined by this definition order.

5.3.6 Direct Field Definition

In the case where it is desired to define a block (of subfields and
mnemonics) for a set of differing subfields of different fields, the MicroASM
indirection syntax may be used. This syntax is similar to the C "struct"
reference syntax.

parentl.childl.childn [fld_width] #act_phasesl
parent2.child2.childm [fid_1wdth] #act_phases2

parentn.childy [fld_width] factyphasesn
{

field definition - subfields and mnemonics

where childn is referenced as a child subfield of childl which is, in turn, a
child subfield of parentl. Parental precedence descends from right to left
with the leftmost field specified is the global field level parent and the
rightmost field being the new subfield to be defined, with each field name
separated by a period ".". fld width is an integer (between 1 and 22) in
any of the acceptable number bases delimited by square braces "[" and "].
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Note that the sum of the widths of all children fields must be less than or
equal to the width of the parent field. The actphases specifiers are
optional and specify the number of phases during which the associated subfield
must be "active" or hold a value. If actphases is specified then all of the
subfield's children (subfields and mnemonics) will be assumed to be active for
actyphaaes as well. If actphases is not specified then each child (or block
of children) may be specified with differing active phase specifiers.
act_phases is preceded by "n". The field definition can include subfield
definitions, mnemonic definitions and default values with the entire
definition block delimited with braces "{" and "}".

5.3.7 Maemonic Definitions

A mnemonic is similar to a macro in that it serves to substitute a
numeric value for an identifier name. In MICROASM it differs from a macro in
that mnemonics are always local to their block (parent field), and serve to
define a FINITE SET of identifier-referenced values for the parent field. In
other words, if a set of mnemonics is defined for a field (this includes
global mnemonics or parent block mnemonics), then no other mnemonics will be
allowed to be used in reference to that field.

5.3.8 DefinlinF ields to Aceept Address Labels

Some fields may need to accept address labels as well as mnemonics. These
labels are defined during the assembly phase in the micro assembly code
itself. These types of logical fields usually refer to address sequencers or
program counters. The syntax for defining a field that accepts labels is:

field def
{

labels

}

The labels keyword may be included with mnemonic definitions in a field
definition. The labels keyword may appear anywhere that a mnemonic definition
can with the exception of global mnemonics. In other words, the global
microword may NOT accept labels. In addition, the field for which labels have
been specified must be of the proper size (as with any mnemonic definition).

5.3.9 Complete Field and nanonic Definition Izauple

The following is an example to illustrate the use of the GERASM definition
language.

/*GENASM Definition example *1

width - 64 /* 64-bit wide microword *1
phases - 4 /* 4-phase system clock */
defbit - 0 /* When in doubt assign a 0 *1

/* Logical Field Definitions */
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multl [22) /* Global level field 22 bits wide called multl */
{

default - OxOOOO /* Default value for multl *1
xsel[3] #1 /* Subfields of multl */
ysel[3] #1
{

cache a - ObOCO /* Mnemonics for xsel & ysel *1
cache b - ObO10
aluI - Ob11O

}

insta[S] /* Subfield starting at bit 6 *1
{

mult - Oblill000 #2 /* Active for 2 phases *1
div - ObOO11000 #4 /* Active for 4 phases */
insflag(l] #1 /* Single bit subfield of insts *
{

real - ObO
imag - ObI

}
rest[7]
{

tia - ObOO01110
tib - Oblill010

instb[8] #2
{

clear - ObnOO0000
load - Obllllli

}

check [2] /* Subfield using 2 bits */
{

ready - ObOl
set -OblO
go - Obll

alu_1 (5] /* Field 5 bits wide called alu_1 */
{

default - Oblilli
cont [3] #2 /* Three bit subfield */
{

on - Ob1ll /* Local mnemonics for subfield *[
off - ObOOO

check [2]
{

go - Obll
clear - ObOo
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4• 5.3.10 Specification of Logical Field to Physical Field Hopping

Once the logical fields are defined they must then be mapped onto the
actual physical microword. Unlike logical fields which may have as many bits
as is conceptually expedient, physical fields are constrained by the actual
hardware for which the MicroASM tables are being defined.

5.3.11 Assigning Logical Fields to Physical Fields

The assignment of logical fields to physical fields is done using the
assign statement. These statements have the following syntax:

assign (offset-_spec) @(phase_spec) - fieldspec;

The assign keyword is followed by the offsetspec which defines the
absolute position within the physical microword that the physical field
occupies. offset__spec can take any combination of the two distinct offset
forms - contiguous form and individual form - delimited by parenthesis "(" and
")". phasespec uses a syntax identical to the offset _spec to specify
absolutely which phases the physical field may becom active in. The
phase_spec is always preceded by an "@". The field spec is a logical field,
list of logical subfields, or bitwise logical/arithmetic expression with
logical fields as operands. The entire expression is always followed by a
semicolon ";". The semicolon syntax for "end of statement" is included since
in many cases these assign statements will occupy multiple lines and the "end
of statement" is easier and more compact than "line continuation" schemes.

5.3.12 Abeolute Phase Specifiers (not implemented yet)

Absolute phase specifiers determine the phases during which a physical
field may become active. This allows the definition of physical fields that
control completely different hardware functions in different clock phases, or
the definition of fields that can alternately carry instructions and immediate
data in different phases. Absolute phase specifiers for physical fields can
take two forms. The syntax for both forms is as follows:

Contiguous form: (first:last)

where first ia the first phase during which the physical field may become
active and last is the last phase during which the physical field may become
active.

Individual form: (phasel,phase2,phasen)

where phasel through phasen are individual absolute phases during which the
physical field may become active.

A valid absolute phase specifier may include combinations of both forms
as in the followings (phase1,first:last,phase2)

Note that the combination of phase length specifiers from the logical
field definitions and these absolute phase specifiers can easily cause timing
clashes which cannot be effectively prevented or detected by the compiler.
Many polyphase machines have such complex timing schemes that there is no way
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to automatically distinguish a timing mistake from a complicated system -
other than one works and one doesn't.

Note also that GENASM always SORTS and COMPRESSES any phase or offset
specification. Thus (0,5,4:1) is converted to (0:5). While, in general, this
simply promotes rational definition it can lead to unexpected results.

5.3.13 Field Specificationa

The fieldspec section of the assign syntax may be as simple as a single
logical or as complex as a complete logical expression with any number of
logical fields as operands. These expressions are important for horizontal
compaction of microwords where sinie physical fields must be used in multiple
conLexts to conserve microword width. The operators allowed in field
expressions are identical in syntax to the bitwise operators in C, with three
additional operators. These are:

& - bitwise AND operator
I - bitwise OR operator
* - bitwise XOR operator
I - bitwise negation (NOT)

The additional operators are:

cat - Concatenation operator
either - Allows physical field to be referenced by one of two logical fields
but not both simultaneously.
parLty() - parity of some field spec.

When the GENASM compiler encounters a field expression it stores the
expression in a table. The expression is evaluated at runtime by HICROASM
whenever the pertinent fields are referenced. Any logical field may be
involved in any number of expressions as long as there are no obvious
conflicts, however care should be taken when using logical fields in multiple
expressions as undetectable clashes are possible.

5.3.14 Assigning Logical Fields to Physical Field Example

The following uses the fields defined as an example of how the assign
syntax is used.

/* Physical field assignments */

/* Assign multi fields except instb to absolute */
/* bits 0-15 becoming active in phase 0 or 1. */

assign (0:15) @(0:1) - multl.xsel,ysel,insta;

/* Assign multi fields except insta to absolute */
/* bits 0-15 becoming active in phase 2 or 3. */

assign (0:15) @(2,3) - multl.xsel,ysel,instb;

/* Abs bits 16 - 18 - bit subfield xsel of */
/* multi ANDed with subfield cont of alu_1. */

assign (16:18) @(0) - multI.xsel & alu_1.conti
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/* Abe bits 20 and 22 are either multl.check *1
/* or alu 1.check but not both. */

assign (20,22) @(0) - multl.check EITHER alu_1.check;

5.4 MCROASI Proaram

The MICROASM program allows the user to write programs referencing the
logical fields and mnemonics as defined in the GENASM program. The basic
format for MICROASH statements is as follows:

Oactyphasl fld spec ml, (mll,m12),m3,mn

@act.yhasn fld__specn mnl,mn2, (mn1l,mnl2),mn3;

Where act_phas is the phase for which the following mnemonics are
applied. It is preceded by @. fld_spec is a parent field specifier and may
be a simple as global field name ("multl") or it may be a direct subfield
reference (multl.xsel). The following mnemonics (ml, .. mn) are arranged in
the order that their parent fields were defined. When a parenthesis is added
this indicates that the mnemonics contained within the parenthesis belong to a
child field of the current level. The following illustrates these concepts:

00 multi cache_a,cache_b,(real,tla),set

Note that cache a is a mnemonic defined for multl.xsel, cache b is a
mnemonic defined for multl.ysel, real is a mnemonic defined for
multl.insta.ins flag, tia is a mnemonic defined for multl.insta.rest, and set
is defined for multl.check.

An alternative structure is:

@actjphasn fld Specn - an;

where the "-" implies that mnemonic mn belongs directly to fld_specn.

5.4.1 References to Inmed:iat. Data Values

Since a mnemonic is actually an identifier associated with an actual
numeric value, any mnemonic can be replaced by an actual numeric value
(assuming the field referenced is large enough). In addition to the integer
number base specifications, MICROASM accepts floating-point data that is
automatically converted to the floating-point format specified. The following
format syntax is supported:
Osfp_num - Single precision (32-bit) IEEE floating-point
Odfp_num - Double precision (64-bit) IEEE floating-point
Offp_num - DEC F Single precision (32-bit) floating-point
0gfp_num - DEC G Double precision (64-bit) floating-point

Example: 0d156.4632e4 would be represented in the microcode as a double
precision IEEE format number.
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This syntax allows the use of various floating-point formats

unambiguously in the same microprogram.

5.4.2 Labels

Labels are used to mark positions within the microprogram for sequencer
jumps and program branches. The syntax is%

labe.=

Where label is an unambiguous identifier to be associated with the
address of its occurrence in the microprogram, followed by a colon ":".
Labels may be referenced in the same way as mnemonics in fields which have
been defined to accept labels. Use of a label in reference to a field which
has not been defined as accepting labels will generate an error.

5.4.3 Absolute and Relative Addressing

There are several methods of programming program jumps and br-uches -
absolute addressing and relative addressing. Absolute addressing simply jumps
to the address (i.e., label reference) specified. Relative addressing,
however, calculates the offset from the current position to the address
specified and this offset is the value stored in the microcode. Note that
offsets can be negative for backward jumps. The syntax used for absolute
addressing is:

addr.spec

where addrspec is a label reference or an immediate value.

The syntax for relative addressing is:

[addrspec]

where addr spec is a label reference or an immediate value.

Following example illustrates:

start:
@0 multi cachea,cacheb,mult,go

1* Loop to start by jumping to start's address*/
seq longjmp,start;

@0 multi cachea,cacheb,mult,go

/* Loop to start by adding the offset of difference between the */
/* current location and start's address to the sequencer. *1

seq shortimp,[start];
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5.4.4 Rzp=reio

Any MICROASH statement may contain arithmetic or Boolean expressions
that follow the same operator precedence and construction rules as C. Theref is no limit on the complexity or nesting of the operations. Obviously there
is a limit on the size of the result. Any result that overflows the size
defined for it will generate an error. The following operators, listed in
descending order of precedence are supported:

I Boolean bitwiae negation (NOT)
* Arithmetic multiplication
I Arithmetic division
I Arithmetic remainder (modulus)
+ Arithmetic addition
- Arithmetic subtraction
& Boolean bitwise AND

Boolean bitwise Exclusive OR (XOR)
Boolean bitwise OR

5.5 MicroASM

MicroASM uses a C type preprocessor to implement macros and conditional
assembly. This is a text processor that manipulates the text of a Pource file
as the first stage of assembly. Although HICROASM ordinarily invokes the
preprocessor in its first pass, the preprocessor can also be invoked as a
stand-alone program.

5.5.1 Preprocessor Directives

The MicroASM preprocessor recognizes the following directives:

#define

I if
*±fdef
#if•def

#endif
ftnelude
fpragsm

The pound sign "#" must be the first non-white-space character on the
line containing the directive. Several of these directives require an
argument or value. Any text that follows & directive that is not part of its
argument or value must be enclosed in comment delimiters "/*" and "*/".

5.5.2 Coustants and Macros

The #defins directive is used :o create constants and macros. Its
syntax is:

#defina mac name aubst text
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#defin. substitutes aubot text for all subsequent occurrences of mac name that
can be interpreted as tokens that are encountered in the source text. In
other words mac name is replaced by aubat-text wherever it is encountered in
the text following the #define directive unless it is enclosed in parenthesis
or is part of a longer identifier. The following example illustrates:

/* Original Source Code */

#define PI 0s3.14159

@0 alu add,cachea,cacheb,PI

/* Source Code after Preprocessing */

@0 alu add,cachea,cacheb,0s3.14159

5.5.3 Undefining Macros or Constants

The #undef directive removes the definition of an identifier. Once the
definition is removed it can be redefined to a different value. This allow
the use of the same macro or constant name to be used with different values in
different contexts in the same source code. The syntax is:

#und3f mac name

This syntax will remove the previous definition of mac name which was
defined using a #define statement. The #undef directive is usually paired
with a #define directive to implement conditional or special case assembly.

5.5.4 Include Files

The finalude directive inserts the contents of the specified file into
the source file at the point where the f#nelude reference occurs. This allows
the organization of common constants and macros into "include files" which may
be #included into any number of MicroASM source files. There is a "standard"
include file called "std.inc" that comes predefined with MicroASM. This file
contains commonly used constants #defined in all of the different number
formats.

Another important use of include files involves including source modules
into a main driver module. This allows the use of smaller easily manageable
source files which can all be included into a larger program.

The syntax is:

#include "file spec"

or

#include <flle_spec>
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These two forms differ in the path search initiated by the preprocessor
for the file specified by filespec if file__spec does not include a complete
path. The first form which uses double quote delimiters searches the parent
source file's directory first and then searches the "standard directories" as
defined via command line or system setup. The second form which uses the
bracket delimiters "<" and ">" begins it's search with the standard
directories.

Include files can be nested, i.e., and include file may itself contain
# include directives. When include files are nested directory searching begins
with the directories of the parent and then proceeds through the directories
of any grandparents and finally it searches the standard directories.

5.5.5 Conditional Assembly

One of the most powerful features of the MicroASM preprocessor is
conditional assembly. This allows the use of a single source file for several
different applications (i.e., a single routine source may be assembled into
two versions, one using IEEE floating-point and the other using DEC floating-
point by simply changing a single statement). The basic directives that
implement this feature are:

#if
#alif
'else
#endif

In addition the definsd() operator is used along with the shortened
concatenated forms

#Lfdef
#ifndef

The syntax is:

Wif const_expr
progtext
#Glf const_expr
progtext

ielf const_expr
prog-text
#els.
prog text
#Mcsif

Each #if directive must be matched by a closing #endif directive. Any
number of #elif directives can appear between the #Lf and #fndif, but at most
one #elso directive is allowed. The #elss directive must be the last
directive prior to #endif. The preprocessor selects only one of the blocks of
prog text which can be any sequence of text occupying any number of lines.
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Typically prog text is MICROASM source code or preprocessor directives. If
the selected progtext is contains preprocessor directives, the preprocessor
carries them out, otherwise prog text is passed to the assembler. Any
progtext not selected by the preprocessor is ignored and thus is not
assembled or processed.

conatexpr is a restricted constant expression that must involve strictly
constants (which may be #defined) and defined() values that resolve to an
integer value. The preprocessor selects a single progtext block by
evaluating the const_expr restricted constant expression following each Mlf or
#elif directive until it finds a non-zero value. It the selects all text from
the #if, #Eslif or #else directive up to the next #Eslif, #else or #endif
directive.

The defined() operator and it's shortened forms #ifdef and #ifndef use
the following syntax:

#if defined(mac_name)
prog text
#Eslf deflned(mac_name)
progtext

#elif defined(macname)
progtext
#el.s
prog text
#endif

or alternatively

Eifdof mac name
prog text
#elf defined(macname)
progtext

islif deflned(mac_name)
progtext
#elie
prog text
fendEL

These conditional blocks operate in exactly the same fashion as other
#if statements. The difference is that the condition is simply whether
mac name has been previously #defined. The other forms, Idefimed() and
#Elhdf are satisfied if mac name has NOT been #defined and are used in
identical fashion.
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5.5.6 Local Amembler Directives

The preprocessor supports a method of embedding assembler directives
into the source assembler code. This is done using the #pragua directive.
The syntax is

ftragm direct name

Following the #pragma directive, direct name is a single identifier
identifying the assembler directive to be active beyond that point in the
code. At this time the only direct names supported by MICROASM are the
floating-point byte/word order specifiers:

LIT 3Ih Swaps low byte/high byte
BIGIfUlAN No byte or word swapping is done
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6.0 Conclusions

The EVA architecture composed of the VPH and the CPH subsystems is
capable of gigaflop throughput for several reasons. Careful attention was
paid to the internal buses so that maximum data transfer can occur among the
boards. The typical board level 10 bottleneck was reduced significantly. Use
of Gazelle hot rod chips with gigaflop clock rates and the fully parallel
crossbar chip made all the difference.

Several innovations were achieved in this SBIR Phase II. Among those
include the crossbar device with unparalleled speeds. The CPH architecture is
ultrafast due to the massively parallel internal datapath options (using the
crossbar). The VPH is a multi wave processing architecture. Fully concurrent
DSP processing is made possible. Use of novel packaging helped to reduce data
transfer bottlenecks. A photograph of the micromemory modules shown next in
Figure 54 made it possible to integrate more memory on the cache boards. Many
interfaces were necessary to interconnect the CPH to a PC, VME, and VPH. A
VME buffer board was designed and built to let the CPH converse with the VPH
and a VIlE bus. It is shown in the next photograph (Figure 55). Most
important of all was the crossbar chip also shown in an accompanying
photograph (Figure 56). The crossbar chip, a 256 pin PGA ASIC reduced board
space by eliminating numerous multiplexer devices.

6.1 VPI Performance and Demonatration

It was predicted at the end of the Phase I project that the VPH would
perform a 1k complex FFT in 800 usec. The board actually executes this FFT in
600 usec. This is largely due to careful hardware design and adroit
programming of the VPH by Larry Hall and Steve Sharp. Programming the 325s
proved to be a challenge because the available application library fit only
one device and not multiple devices. Nevertheless, once the wave concept was
mastered and used consistently, programming to optimize performance became
routine.

Code for convolutions, correlations, and coordinate transformations was
completed quickly. Using conventions for startup and terminating DSPs helped
reduce the effort. The STARTUP and FINISH routines were created for generic
code segments so that they could be used over and over. The 68020 also proved
to be advantageous in controlling the synchronization. As a result, all of
the Phase I performance predictions were exceeded by at least 25%. Some of
the code performance is tabulated below.

Algorithm (4 DSPs) Execution Time (usec)

1k Complex FFT 604
64 Point Correlation 40
64 Point Convolution 42
8x8 2D FFT 65
16x16 2D FFT 270
32x32 2D FFT 724
Polar to Rectangular 25
Rectangular to Polar 48
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Figure 55. Serial 110 Board
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Figure 56. Crossbar Drle

Note that the 2D FFTs are fast enough for real-time frame grabbers and
CRT displays where 30 frames a second are often viewed without flicker.
Hence, there is a real possibility that the TSI tracker and the Space Tech VPH
board can track, focus, and translate in real-time instead of off-line.

The VPH, depicted in the following photograph (Figure 57), was
demonstrated at WSMR in the Instrumentation Development Directorate on 25
August 1992. The VPH was interfaced to a TSI single board computer inserted
into the VPH mainframe. A PC was used as a terminal for the VPH and the TSI
SBC had its own terminal. The demo consisted of transmission of data between
the VPH board shown next in Figure 58 and the SBC in either direction,
executing digital signal processing programs, and sending results to the PC
terminal and the SBC terminal.

Special drivers and utilities were generated. These drivers manipulated
data and programs from the PC so that the debugger in the SBC could access
them and display results on the SBC monitor. A section of the SBC memory
space was allocated for the VPH results and processed data was sent there.
Likewise, programs were downloaded from the SBC to the VPH to be executed by
the VPH. This demonstrated that the SBC could serve as system VHE master or
controller. This also demonstrated that the VPH could be a VHE slave in a
generic VlE system. This is important for the VPH as it is also intended to
be interfaced to SUN workstations. An important device in the VPH greatly
facilitated the SBC/VPH interface, namely, the MVME 6000 VHE Interface chip
from Motorola.
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The DSP programs that Space Tech created for the demo were a 1KFFT and a
correlation. Both programs were verified as functionally correct by comparing
results from independently generated outputs from C routines found in the
text, Numerical Recipes for C. A roundoff utility, a compare word by word,
and an internal 16-bit fixed to IEEE floating-point data type conversion were
used to test the results. The iKFFT output was within 5 decimal digits of
accuracy in all but 5 data points. The other 5 were within 4 fractional
decimal digits. The correlation results were within the same range of
precision. This is to be expected in both cases since the PC has a 16-bit
internal processor and the VPH has a 32-bit internal processor. The execution
times for these and other DSP routines are shown in listing above.

AAn important discovery of this demo is the need to map and translate
memory maps across the several domains. Those physical domains include the
EPROM space, register space, and data space of the ZORANs, the data and
program space of the 68020, and the data and program space of the SBC. Care
must be exercised when translating the correct hexadecimal literal values.
Tables are included in earlier sections to make the translations for the VPH.
It took Space Tech some time to determine that space for the SBC and the MVME
on it because little documentation existed.

The demonstration was executed by inserting the TSI single board
computer board into the VPH chassis as depicted in Figure 59. A Packard Bell
PC was used for the VPH CRT and keyboard while the SBC had its own terminal
and keyboard. The memory mapping described in the previous paragraph is
illuminated in this figure when we observe that the address space of the SBC
is 16-bits while that of the VPH is 32-bits. Hence, address modifier bits in
the MVME 6000 were used to perform much of the translation between the VPH
memory and the SBC memory. All of the standard VlE bus control signals are
available on the VPH backplane and all were used in the demonstration.
However, only the frequently used control signals are shown in the figure.

The demonstration also consisted of exercising one, two, and four ZORAN
DSP chips separately and together. Because a transparent bus arbitration PAL
and scheme was designed into the VPH, it was relatively simple to turn single
or multiple DSPs on and off. The procedure is to set up the status register
in the VPH by the 68020 and let each ZORAN monitor their own "start" bit. If
the bit is set, the respective ZORAN chip would initiate execution.
Otherwise, it is suspended. Likewise, when a DSP chip has completed its
current wave, it sets its "done" bit and stops. The 68020 monitors these bits
as the board master. It is also possible for any resource on or off the VPH
board to monitor these tits. Hence, the SBC can scan these bits as they are
found in the public domain of the VME backplane. This feature is very useful
when more than one master is P-ercising VME resources. This capability will
support the SBC tracking and ti- VPH processing data in real-time. The intent
of this design is to enable the VPH to process in the background while a front
end, like the SBC, is acquiring the data. The "Status.ASM" code in Appendix B
was used to demonstrate this capability.

1
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A number of other code segments were demonstrated. They include
CConv.asm, Rect2pol.asm, FFT2d8.asm, Pol2rect.asm, FFT2d16.asm, FFT2d32.asm,
Ccorr.asm, FFTlk.asm, Recip.asm, and Rconv.asm. All of these routines are
found in Appendix B. Others are included there and are useful for performing
diagnostics on the VPH. Furthermore, they can be used to help understand
coding the DSPs. Specifically, "Testl.asm" and "Test2.asm" are useful for
diagnosing the ZORAN chips and their interrupts, respectively.

For the IKFFT, a random set of input points were choseu rather than a
known set of points. In this way the DSPs were demonstrated as to accuracy
and precision without any bias towards a known solution or output. The
results of the FFT were then compared with those using the same input values
to a standard C routine. The correlation program input used two signals. One
was a square wave followed by a triangular wave. The other was an impulse
function. The output of the correlator worked as expected. To verify our
intuitive conclusions, it was necessary to zero pad the front end of the input
data stream so that aliasing would not corrupt the interpretation.

6.2 CPH Conclusions

The CPH design effort was constantly buffeted by the technology
envelope. An aggressiveness design stance was chosen at first to capture any
and all new devices or promised devices. Among those included FPGAs and ASICs
with performance specifications untried by designers. When the point of no
return for fixing the design of the CPH came, some of the critical devices did
not live up to advanced performance specifications. As a result the CPH
design underwent more iterations than anticipated. The only conclusion to be
drawn is that designers should not push the technology envelope.

Unexpectedly, available devices became unavailable as manufacturers
became cost sensitized. Reduction of inventory became commonplace. The AMD
29540 FFT addreso sequencer, a staple for any FFT designer, was removed from
AND's catalogs. A work around required over 40 16-pin chips. The large
number and size could not be supported by the available board space.
Subsequently, the address generator board would have to produce FFT addresses
in microcode. The VPH then became an important board to the EVA machine
because it was capable of very fast FFls.
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7.0 Suggestlons for Phase III

The CPH should be completed and fabricated. In doing so, the following
is recommended. Clock distribution on the backplane could be done with a
single TTL clock which will have low skew from board to board. Then, each
board could have a digital delay line to adjust for the skew. Use a double
rate clock so each board will develop 180 degree clocks for the quad. A
single stepper on the backplane would be useful. Install a switch or jumper
to make the selection between RUN and Single Step modes. Then debounce the
switch manually or use a trigger so single stepping can be done from some
external interface.

7..1 Backplane Design

The current EVA chassis has a 9U VME backplane and a custom backplane
for the CPH side. The custom backplane is not complete. In the next
development phase, this effort will require the selection of system clock
circuitry. That circuitry may be distributed physically across this
backplane. It will have to be, especially if ECL clocks are used. Six
differential ECL clocks should be used with the same clock timings as shown
for the cache memory board section. A provision for single stepping the
clocks should also be provided for diagnosing system faults. A status bit on
the PC-TNT board may also be used here to control single stepping. Another
desirable option would be to freeze the clock at 40 MHz and return it to the
state just before the freeze. Obviously this will only be useful if entirely
glitch free operation can occur. Finally, terminations need to be designed
into the clock circuitry at the end of the lines so that overshoot is
suppressed.

7.2 I2ntegration of the EVA Computer

The VPH can be a standalone board or hosted via its VME bus directly to
a SUN workstation or indirectly to a 6U VIE system with a single board
computer. Integration involves more than hardware, however. The system
software of the host must be modified to make calls to the VPH, upload and
download code and data, and manage the throughput of the VPH. Because VPH is
so fast, the VME bus is not the best choice. Another high speed bus can be
used if the host has the port. The VPH to CPH bus via the SIO channel uses
the Gazelle hot rod chip set with gigabyte transfer rates. A future effort
could examine the implementation of this path to a host.

If EVA is to be integrated fully to the TSI tracker, a good approach
would be to put the TSI 6U VIE backplane into the EVA chassis. This will
allow the VPH to plug directly into the TSI backplane in one chassis and speed
up operations further. It is a simple matter to mechanically modify the EVA
chassis. Two new rails are necessary.

7.3 Crossbar Applications

The crossbar is an ultra fast switcher. It is general purpose so that
any digital data gateway can benefit from its dynamically reconfigurable
switching. The 12x14 In OUT paths are changeable in one single clock cycle.
No other crossbar can do this. Also, the crossbar is cascadable so that each
4-bit slice can be expanded into any wordlength desired. Telemetry gateways

£ 203

I



may benefit from this remarkably fast switcher. Wide area telephone net works
could benefit from this powerful device. WSMR should consider a Phase III
technology transfer with this chip to applications Army-wide.

7.4 Caaeadability

Cascadability can be supported for fixed-point arithmetic. Use one
block of memory and a processor board for the lower 32 bits of the 64-bit
number. Use another configuration for the upper 32 bits. Microcode will
have to be very sophisticated because the BIT chips do not provide all the
necessary signals and flags. Also, the CPH throughput will fall off
drastically. The better approach would be to use the 64-bit capability of the
BIT chip direct 4 .

Cascadability will require a local address bus so that the local CPH can
use the HSIO bus without conflicting with the other CPH HSIO bus. Currently,
the design supports an HSIO address that is broadcast everywhere. Additional
hardware will be needed.

The system initialization bit is on the cache memory board in 10 space.
This bit will need to be set on the backplane and cleared by the HSIO. Hence,
the AG has to be the principal owner of this bit. Each cache bank will have
minor ownership. The IOP will need to monitor this bit so as to determine the
system configuration (where multiple CPHs are installed).

7.5 EVA Kxtezaions

The EVA architecture will prove to be a durable concept for many years.
It should be completed to the extent possible by the new technological
advances. Never FPGAs and ASICs will greatly reduce the board space. Better
transceivers will be available in late 1992. They should be considered for
the HSIO bus. Also, since the BIT 3130 and 3120 ECL ALUs are available, a
redesign of the CPH to include these 80 MHz devices may be advisable now that
the system issues of EVA are formulated. However, selecting ECL ALUs may
eliminate the need for the crossbars or modify them for nonpipelined
application. Caution is advised in choosing 3130s etc., because these chips
may also become unavailable in the future possibly being overcome in superior
performance by the GaAs devices.

To fully support EVA, the MicroAsm microprogramming tool should include
a linker and PROM formatter for the new PROMs. If the multiphase clocks for
the WCS are to be kept, then MicroAsm should be updated to support multiphase
microinstructions.

7.6 1OP Coplet on

The IOP is a general purpose 10 traffic controller. The design can be
completed by adding the boot state machine and some MUX data clocks
(PCMUX,SIOMUX,HSIOMUX). Counters A and B enables should be added to the
schematic. Also, the microsequencer design control signals need to fully time
analyzed and certified for race and hazard free operation. This is on sheet
10 of the IOP schematic set.

To download microcode from the lOP to the processor, use the HSIO signal
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I
lines labeled "DNLD ENABLE". At this point all boards should be in the
"available" mode. Two new signal lines should be designated on the HSIO bus.
They are DNLD REQT (from CPH to lOP) and DNLD FINISH (from IOP to CPH).

To upload condition codes of the processor board, use microcode bits to
aaenable same. The AG will read the error FIFOs on the processor. Since there
are many flags on the BIT chips (12), a 48 to 1 mux could be used to pass 1

I flag only. Another flag could be the interrupt flag.

7.7 Wave Procesing

The VPH application programs have been heavily optimized. However, there
is always room for improvement especially when multiprocessing occurs. Some
of those improvements were noted in the VPH User's Manual. If additional VPH
boards are inserted into EVA, then wave processing can occur over 8 or 16 DSP
chips with an attendant increase in performance. New code can then take
advantage of this hardware extension.

7.8 VPR Auamented Bus

The VPH communicates with the CPH through the extra 32 bits in the VME
space via an augmented bus. In this manner true parallel 64-bit transfera
take place. For the SBC interaction across the 32-bit VHE bus, this augmented
bus is not needed. Hence, firmware in the VPH PALs would have to be

- regenerated if this augmented bus were to be activated. The PALs must allow
for redirecting the upper half of normally unused memory space (for the SBC)

back to the CPH address space. This is straightforward and a simple PAL
reprogramming is necessary.

7.9 Phase III Opportunities

The VPH stands an excellent chance of technology transfer into manyI digital signal processing applications. Chief among those are those found in
biomedical imaging applications and seismic signal processing. Both
commercial applications need ultrafast FFTs. Both need over Ik length FFTs.
Seismic data processing requires lkxlk 2D FFTs. The VPH can handle very large
FFTs but it might be better to add additional memory to the board first. This
will reduce the off board data traffic. New and denser memory chips are now
available and can be used in a mezzanine board for this purpose.

The crossbar Phase III opportunities have been presented already. The
device itself should find many practical applications outside of computing.

I4
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Date: 6/30/92 File: MULM.ASM
Size: 261 Last Moditfie: Thu Feb 06 13:54:22 1992

1 - /*MULM.ASI.4/
2 - PROGRAM4 CODESEG MS.RAM
3-
4 - ORG 0
5-
6 - start:
7 -$IMMADD gxEOQGIC
8- $ADDRA IMMP0
9 SADDRR IEM, P0

10 $CACER ,RDAB
11 -REGAR,,BR;
12 -
13 - $SEQ ,CONT
14 SMI AR,POMS,BR,POMS, IMULT,EN.MS;
15 -
16 - $SEQ ,CONT
17 -
18 - $MWR AR,POMS;
19 -
20 - PROGRAM ENDS
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Date: 6/30/92 File: B:IWT.ASIg
Size: 573 Last Mocdifi~ed: Mon Feb 10 04:06:44 1992

1 - /'IMD.r,, TESTS INTEGER MULTIPLICATION, ROXRi = R2, INTEGER RESULT IS OUTPUT VIA IOR, LEAST SIGNIFICANT SITS ONLY
I -( 32-SIT MULTR) X/

:3PROGRAK CODESEG 118MM
4 - ORG 0
5 START: CO1TSRG CLEAR 0X00,CLEAR,0X01;
6- S'E 'CON~~T. a.... oxoo,oxc61;7 - •SE ,COBT;

,3- S ,CONT; /*WAIT TWO CLOCKS FOR XEAR DATA AVA OUT*/
9-S 1 CONT M1 REGA 6POLS,REGB,POLS, IMULT,EN,LS;
11- t. ONT; /-sOLD m1 OUTWUT RESULT TO HER FOR )M•AR*/

12 - S I 'ONT $REG ,,,. 0%02;
13 - , CONT;14 - E 1C :ONT,
is- IOR REGAPOLS;

I
- -a-- 

ssss

.I ...... ... .......



1 -/* XORZADD.ASM
2 -RO-O
3 R- R1
4 -R2-R1.RO
5 1 OR-R2
6 -Tests the ALMl with the data register file. Adds two numbers from reg 0 and reg I.Cleare req 0 and 1 with data from

imediate field, then adds reqOt ei puts sum In reg2. operands are azer. result should be zero. result appes,
7 10 port real aide (least .ig iicant anly).-/

8 -PROGRAK CODESEG MSRAK
9 -ORO 0

10 -START: $ EQ CONT
11 -REG C 00 oo CLEAR OXOI*
12 -SE 'CONT6REG 11 ...OXO0,6kO1;
13 - CONT
14 Z SE CONT SAl REGA POLS RIGB POLS ,IADD EII,LS;

15 - ,CON S~l ,,,,EO6,LS$fiEG Ai,0X02;
16 a S ,CONl'SRE, 6
17:P! END R M6POL;



a 60File: IoRADO.ASM

Dite: 44 2 
Last Modified: Mon Feb 10 05:35:50 1992SSize: 

441 
.......................... 

..........................~lml~n== -

1- /-IOR 0D.ASMI0R010CN A CONqTINUOUS LOOP WARNINGINED TO CHECI HOW IOR CONNECTS TO ALUl POwRT X AND 101 CONNECTS

T- TO ALu÷ PORT Y SIMULTAIEOUSLYLO, CEMCK IE Loop J16=1= COMMAND FOR THE MICROSEQUENCE /

: OR PROGPAM CODESEG MSRANM

5 - SSEQ ,CO T ;

7 - SEQ ,CONT;
8 $SEQ ,CONT $Al IORPOLS,IOIPOLS,'IADDENLS;

10 SE ,CONT;

12 S OP,LI;13-P SE NDS

......... ... 
...... .........-.

.... 
Page:
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Date: 6/30/92 File: SUBFIELD.ASM
Size: 1302 Last Modified: Tue Apr 21 16:09:04 1992

sssssssssss.----...-..............- .=- ...... =-.......-------.......................

1 - /*File:subfield.asm
2 Program showing examples of double use of SEQ.DATA field and the results

of the varying default definitions when different fields are omitted. In
4 eneral a default value will be used when its parent is specified but

the fieid itself is omitted. Later specifications overwrite earlier ones.
6 -
7-
8 - PROGRAMCODESECTEST
9-
10 - ORGO
11 -
12 - TOP:
13 - /*This works properly, filling in label value. */
14 $SEQ JMP,BOTTOM;
15 -
16 - /*This will use SEQ.INSTR & SEQ.DATA defaults since omitted. */
17 -$SEQ;
18 -
19 - /*This will use SEQ.DATA default, since omitted. '/
20 - SSEQ NOP
21 /*Use dot to access subfield, overwrites SEQ.DATA default value. */
22 - $SEQ.DATA FIRST,0x3;
23 -
24 - /*With $SEQ not specified SEQ default will be used and */
25 /"the SEQ. INSTR and SEQ.DATAdefaults will not be used. */
26 /*Subfield definition overwrites SEQ.DATA part of SEQ default. */
27 /*VALUE omitted so SEQ.DATA.VALUE default will be used. */
28 - $SEQ.DATA SECOND;
29 -
30 - /*This defines the SEQ.DATA subfield. */
31 -$SEQ.DAA THIRD 0x5
32 /*Wrong order: AEQ.DATA overwritten with its default value. '/
33 $SEQ NOP;
34 -
35 - /*This defines the entire SEQ field. */
36 - $SEQ JMPTOP
37 /*Wrong: this overwrites the jump address without warning. */
38 $SEQ.DATA THIRD,0x5;
39 -
40 - BOTTOM:
41 -
42 - PROGRAMENDS
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Date: 6/30/92 File: B:RCONV.ASM
Size: 4607 Last Modified: Tue Jun 30 15:28:58 1992
----------------------......---.....-......---...................... --...........-............---------------

1 /*VPH code for convolution of a real sequence of up to 64 points with
2 another longer real sequence, producing up to 1024 outpute. Thcs
3 size can be done with a single FIR instruction. This code can be
4 called repeatedly on a single processor to handle convolutions where
5 more than 1024 output points are required as long as the shorter
6 sequence is still lose than 64 points. However, a different routine
7 designed for a longer convolution would be more efficient. This
8 ame code can be used on multiple VSP chips simultaneously to give
9 a considerable speed increase. There may be no benefit to executing

10 on more than one VSP chip per bus because the FIR instruction may not
11 give up the bus between output points.
12 -
13- To get a full convolution of the input requires padding both ends of
14 the longer input sequence with a number orzeroes equal to the length
15 of the shorter sequence minus one. This is required in order to
16 explicitly provide the zeroes that are assumed to be multiplied by
17 elements of the shorter sequence that extend beyond the ends of tne
18 longer one durng the convolution process. The length of the output
19 sequence should be equal to the sum of the lengths of the (unpadded)
20 input sequences minus one. If a circular convolution is desired
21 instead of a linear one, the zero padding should be replaced with
22 points from the other end of the input sequence.
23 -
24 - The shorter input length is passed in Coef Length. The output length
25 equl to int length before padding plus-coefficient length minus one)
26 (t paseed an Out Length. Coef icienta points to the shorter sequence
27 f h cally FIR fIlter coefficients). InData points to the start
28 o a-the longer sequence (possibly a zero pad). The output is placed29 -at Out Data. Typical ca I for a four tap filter:
30 CALL RMONV(4, 1024, &Coaf, &iIn, &Out)
31-32 -The convolution can be performed in place with careful choices of

33 .parameter values. If the convolution requires multiple calls on a
34 single VSP chip the output must begin at the first location of the
35 long input. ThIs avoids overwriting inputs that w bl be needed for
36 the next call. However, if multiple chips are being used tie output
37 must overwrite the last input used in its computation. Tide works
38 because the VSP chip has already read the input into internal RAM
39 for further use. It is necessary because that input is the first
40 one which will not be needed by the chip working on the previous
41 -ortion of the convolution. Some further care is needed in the
42 nintdl startup of in-place multiple chip convolution to ensure that
43 a chip does not write over any input values before the subsequent
44 chip reads them in. A multiple call, multiple chip convolutYon
45 cannot be done in place because the constraints are contradictory.
46 However, such a large data set would not fit into shared memory.
47 -
48 - Splitting u? a convolution between NUM CHIPS chips would require
49 something lIke the following invocatio• for chip ranging from zero
50 to (NUPCHIPS - o):
51 -
52 - CALL RCONV(COEF LEN, OUT SIZE(chip) ACoef
53 &(In + DATA OFFo T(chip)T, &(Out LARAOFSET( chip)));
54 -
55 - with the definitions
56 -
57 - #define OUT LEN (IN LEN + COEF LEN - 1K
58 #define DATX OFFSETTCHIP) (((CHIP) OUT LEN) / NUN CHIPS
59 #define OUT _IZE(CHIP) (DATA_OFFSET(CHIPTI) - DATA_OFFSET(CHIP))
60 -
61 - Note that since all this routine does is to load various values into
62 - internal registers and RAM and then execute a single instruction, it
63 might be faster for the 68020 to load the values directly and execute
64 the FIR instruction in slave mode. The same applies to the complex
65 - convolution and the correlations.
66 -
67 -
68 - zsp325()
69 5,70
71 - SUBROUTINE RCONV(zr325int CoefLength,
72 zr325int Out Length,
73 zr325ref CoeTficients,
74 zr325ref In Data,
75 zr325ref Out Data)
76 -
77 *s/et up mode properly one RAN bank, 24 bit integers */
78 SET [nB, "IXOR ,.T ];79-
80 - /*set SSAR to put output in correct place "1
81 LDR OutData -> SSAR;
82 -
83 - /*to get real coefficients in zig-zag order, need to load half
84 an many (rounded up) -complex coefficients85 - "
86 - SHLIETR:CSHIFT-17] Coot Length -> SPR;
87 ADDR SPR, #0x020000 -

89 - /load coefficients in reverse zig-zag real order 5/
90 - LDR Coefficients -> $A;
91 ADDR $A, Coef Length;
92 SURR 1A #2- -
93 LD (I,R):($SMPT) $A:(-1,l) -> $CO;
94 -
95 - /*now set up actual lengths for FIR instruction '1
96 sm-A [SBIFlS] CoTf Length ->$lPc;
97 ADDR $PR, Out_Langth; -
96 -
99 - /*convolve with input sequence /

100 FIR Rt($NMPT, SREPIAT) SZO, *In Data;
101 -
102 - 1
103
104 - )

....... . ...................... . .. . . . . .
Page:



Date: 6/30/92 File: B:CCONV.ASM
Size: 4158 Last Kodified: Tue Jun 30 15:28:04 1992

1 /*VPH code for convolution of a complex sequence of up to 32 points with

3 size can be done w th a sin le FIk instruction. This code can be
4 called repeatedly on a single processor to handle convolutions where
5 more than 1024 output points are required as long as the shorter
6 sequence is still no more than 32 points. However a different routine
7 designed for a longer convolution would be more efiicient. This
8 same code can be used on multiple VSP chips simultaneously to giveS• aconsiderable speed increase. Theremay be no benefit to executing

10 on more than one VSP chip per bus since the FIR instruction may not

1 give up the bus between output points.12-
13 - To get a full convolution of the input requires padding both ends of
14 the longer input sequence with a number o complex zeroes equal to the
15 length of the shorter sequence minus one. This is required in order
16 to explicitly provide the zeroes that are assumed to be multiplied by
18 longer one duringhe convolution process. The length of the output

19 sequence should 1e.equal to the sum of the lengths of the (unpadded)
20 input sequences minus one. If a circular convolution is desired
21 instead of a linear one, the zero padding should be replaced with
22 points from the other end of the input sequence.
23 -
24 - The shorter input length is passed in Coef Length. The output length
25 (equal to input length before padding plus-coefficient length minus one)
26 is passed as Out Length. Coefficients points to the shorter sequence.
27 In Data points t5 the start of the longer sequence (possibly a zero
28 pa'). The output is p laced at Out Data. Typical call:
29 CALL CCONV(4, 1024, &coef, aI, uOut)
30 -
31 - The convolution can be performed in place with careful choices of
32 parameter values. If the convolution requires multiple calls on a
33 single VSP chip, the output must begin at the first location of the
34 long input. This avoids overwriting inputs that will be needed for
35 the next call. However, if multiple chips are being used the output
36 must overwrite the last input used in its computation. This works
37 because the VSP chip has already read the input into internal RAN
38 for further use. It is necessary because that input is the first
39 one which will not be needed by he chip working on the previous
40 - portion of the convolution. Some further care is needed in the
41 5nitialstartup of in-place multiple chip convolution to ensure that
42 chip does nos write over any input values before the subsequent
43 hip reads them in. A multiple call, multiple chip convolution
44 cannot be done in place because the constraints are contradictory.
45 However, iuch a large data set would not fit into shared memory.
46 -
47 - Splitting up a convolution between SUN CHIPS chips would require
48 something like the following invocatioE for chip ranging from zero
49 to (NUM CHIPS - 1):50 -
51 - CALL CCONV(COEF LEN OUT SIZE(chip), &Coef
52 &(rn + 2 DATAO chi)), &(Out + 2*DATAOFFSET(chip)));
53 -
54 - with the definitions
55 -
56 - #define OUT LEN (IN LEN + COEF LEN - 1)
57 #define DATX OFFSETTCHIP) (((CHIP)* OUT LEN) / NUM CHIPS)
58 #define OUTEIZE(CEIP3 (DATA OFFSET(CHIPTl) - DATA_OFFSET( CHIP))
59 -
60 - DATA OFFSET is doubled when used with pointer parameters because
61 eacbhcomplex element requires two machine words.
62 -
63 -
64 - zsp325()
6566 •

67 - SUBROUTINE CCONV(zr325int CuefLength,
68 - zr325int Out Length,
69 zr325ref CoeTficients,
70 - zr325ref In Data,
71 - zr325ref Out Data)
72
73 *set up mode properly one RAM bank, 24 bit integers */
74 SET [ -MNS, MXO1 , Tj ;
75 -
76 - /*set $SAR to put output in correct place */
77 LDR Out Data -$SA
78 -

79 - /*now set up lengthe for LD and FIR Instructions /
80 SHLSETR:[SHIPT-18] Coef Length -> SPR;
81 ADDR SPR, Out-Length; -
82 -
83 - /*load coefficients In reverse order /
84 - LDR Coefficients -> $A;
85 - ADDR $A, Coef Length;
86 SUHR $A #2 -
87 LD C:($SMPTS $A:(-1,l) -> $C0;88 -
89 - /*convolve with input sequence a
90 FIRC:($SMPT, SREPEAT) SC0, 'In Data;
91 -
92 - /
93 1/

P' - )

I

IPage:•
I



Date: 6/30/92 File: B:RECT2POL.ASII
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--------------------------------------------------------------------------------------------------.............

1 -/*Routine to perform rectangular to polar conversion on a corn~lex vector.
2 UsJes a Cordic-lIke algorithm forimagnitude and an arctangsnt lookup
3 -table for angl, in radians. Maximum error in magnitude is 2% for
4 -three iterations, which can easily be reduced to a value as low as
5 0.0002% b, increasing the number of iterations to eight. Maximum error
6 -in angle Is 2.33% for 5 bits from each mantissa which requires a table
7 -of IX entries for first quadrant angles only. +ihe table size must be
8 quadrupled for each doubling in precisin , so this approach is not
9 -practical for high precision.

10-
11 -Thisproram comtes oly first quadrant angles. Ohrage r

12~~ ~ ~ -oe notefrst quadrant by taking the absolute value of bth
13 -components. This means that the angle will be correct for the first
14 -quadrant, equal to pi minus the true angle in the second quadrant,
15 - eual to the true angle minus pi in the third quadrant and equal to
16 -mnus the tr us angal in the fourth quadrant. These angles are the
17 -absolute values of the anglee between the complex numbers and the
18 -nearest real axis. If full anglestare needed, the table can just be
19 -quadrupled to handle sign bits in the index.
20 -
21 -The vector length is passed in the parameter Length. The parameter
22 -In Data points to the vector to be converted. Tne output is laced
23 -at-OutData. The conversion can be performed in place if desired.
24-
25 -'
26-
27 -/*need arctanqent function for table '
28 # include <math.h>
29-
30 -/*number of bits from each mantissa to be used in arctangent table lookup *
31 # define TAB BITS 5
32-
33 -/*number of Cordic iterations for magnitude calculations '
34 # define J4AGITE3R 3
35-
36 -/*function to return arctangsnt table value for index number *
37 -/jonly handles first quadrant angles, but could be modified for all four '
38 f foat tabentry~int i)
39-
40 -mt, fbite(21;
41 - mt part;
42 - mt index;
43-

44/*determsine numbers that would have produced the given index/
45 for (part - 0; part <- 1; part++)
46-
47 - lextract interleaved mantissa bits from index '
48- fbits part] 0;
49 -for (index =0; index < TAB BITS; index++)
50-(
51 - bita[part) I- (I << Index) £(I >> Index + part);
52

54-
55 -/*return middle anglo uf the possible range /56 -return Satan2( (double) fbits[01 - 1, (dou is) fbitsol1 +
57 a atan2(( double) fbita[OJ (double) f Itall) + M) 20
58-)
59-
60-
61 -/*actual assembly generation function '
62 -zop325C)

63-
64-mnt index;
65-
66 -/*Generate arctangent table. Because of normalization, only first
67 - ntry and last three quarters if table are actually used .
68-
69 -/0
70 -AtanTab::
71 V 8
72 -for (index - 0; index < (1 << TAB BITS*2); index++)
73 )#-

75 DATA J (IEEE Float(tabentry(index))) )
76 8
77
78-
79 -I
80 -SUBROUTINE RECT2POL(zr325int Length, zr325ref In-Data, zr325raf OutData)
81-
82-
83 -/*Bet uy two RAN sections, swapping on each loop iteration/
84-SET [ YMS, -XOR]1;

86 -/*load data pointers, parameter order gets In Data Into $A ~
87 -LDR Out-Data- [BA;
88-
89 /*initialize loop count to number of 32a, skip loop if none/
90 SEMESE:ICSSIFT-51 Length -> $LC;
91 -JMPC [ZR), Do Rest;
92-
93 -/*firet part of loop to fill software pipeline '
94
95 / *1 d to bank 1, tke absolute value to put in first quadrant '
96 -LD II:(32) $A ->'$ta;
97 -/'ilign mantinasa and interleave to create atan index in S ID
98 ALION:(321 $Rl, $11 *> $10;
99 /*do cordic Iterations to get magnitude in $Rl, takes a while
100 - lg 32,MAQ ITER) $Cl-

10 -I lok p Arcaqn ntbE, overlaps with MAG102 - nj'1(32):[SHIFT- (231- 2TA BiTS)] AtanTab, $10 -> $10;
103 - sore angle, ovras w~itMAG/
104 -ST I:(32) ,'-0 *,,B+-l:( 2,1);
105- -
106 -/*decrement W1. end loop if done '
107 -JMPC:CIZ,DLIJU[I], Do _Store;
108
109 -/*software pipelined loop, allows next load to overlap MAG '

--------------------------------------------------------------------------------------------------....... .. . .
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110 -Loo;
111ll 1PC.32) $A+-64 -> $Ci;
112 - /'itore magnitude from previous vector ~
113 -ST R:(321 $RO -> $B-.1:( 2 1);
114 MLTQM: (34 $R $11 -> slo;'

1162 LT (325 :(S RIT= (23 -2TAB BITS)] AtnTab, SI0 => $10;
117 -ST 1:(32) $10 -> 884-64(2,I)-I118 /-'dhecreme~nt counter and brancAi to top if not done ~
119 -JMPC4[IE:1,DL:l] (ILZ], Loop;
120-
121 -Do Store::
122 Yoset of loop to empty software pipelIne ~
123 - /'store meanitude from last vector '
124 -ST R:(32) $RD -> B12,)
125 DoRs:
126 DoRs:
127 - *iandle remainder left after blocks of 32 '
128-
129 -/*shift remainder into SNMPT, use ITC] to zers high bit
130 -SEISETR: HSIFT=18,TC] Length -> $Pa;
131 -JIPC (ZR] End;
132-
133 -/*need MAG ITER in $REPEAT to use $PR with MAG
134 -ADDR SPR, UNAGITER;
135-
136 -/*fjnish up remainder *
137 - 1. j:11FNP + $A-4 > 5(21
138-ALTGN: SMT)R1,6 _>1' $io;
139 -MAG: $$IG $PEAT)$C1;
140 -LUT:j (SMPT : (SBIFT=( 23 2*TAB SIrrQ)J AtanTab, $10 $10SI;
141 -ST I: (NM4PT )10 _> $B+-64-(2I)
142 S- SR:C$NPT )R1 -> $B-1:2,151;
143-
144 -End::
145-
146-
147 -9

148-)

Page: 2



Date: 6/30/92 File: B:FFT2DB.AsM
Size: 1158 Last Modified: Thu Jun 25 13:41:02 1992

-----------------------------------mm-...---.....................................-.-...........-.-.--m-...m.....

1 /*Program to compute 8x8 2D complex FFT using one VSP chip.2-
3 The parameter In Data points to the input vector. The output vector
4 is placed at out-ata. The operation can be performed in place if

dealred. Both input and output vectors are in normal order.6-
7- To get an inverse FFT Just change the subroutine name and change the
8 FFT instructions to IFFT instructions.
9 -

10 - To use real data, change LD_C to LD_(R,0).
11 -
12 - Might be able to squeeze a little more speed out by starting with
13 two RAM sections, load first FFT first rows, load second, FFT second
14 rows, switch to one RAM section, FFT columns, store.
15 -
16 -
17 -
18 - zsp325()
1920 •

21 - SUBROUTINE FFT2D8(zr325ref InData, zr325ref OutData)
22 - (
23 -*set up one RAM section */
24 SET C -NMS, -IXOR ];
25 -
26 - /*load all 64 entries, with rows bit reversed */
27 LD_C:(64) *InData:(8,8~) -> $0;
28 -
29 - /*FFT the rows result in normal order */
30 FFTC:(8,8):[FfS:I,LPS:4J $0~, $ROI-0:512;
31 -
32 - /*FFT the columns result in bit reversed order */
33 FFTC:(64):[FPS:32,LPS:8] $0;
34 -
35 - /*store result, bit reversing columns into normal order -/
36 ST C:(64) $0 -> *OutData:(8 ,8);37
38 •-

39 - )

Page: 1
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/*Routine to find peak values in a rea mtrix. By varying parameters, it
2 a rdc etrof the max value in each row or column or the max

I can produce a etr axv lu na

3 value in the entire matrix. The calculation can be divided between
4- multiple VSP chips by giving each one a contiguous subset of the problem.
5 The maximum amplitude of a complex matrix can be found by first computing
6 the power (magnitude squared) and finding the maximum of that. If the
7 magnitude itself is required, it is probably still faster to find the
8 peaks first and then compute the magnitude for only those points rather
9 than computing all the magnitudes and finding the Peaks.

S10
11 - The routine has a large number of parameters to allow it to be used in a
12 flexible manner. The parameter Number gives the number of separate
13 vectors (rows or columns) to find the maximum for. The parameter Length
14 ?ives the length of each vector (row or column). Length must be no more
15 than 1024 for this routine, though a slight modification would allow up
16 to 64K. The input parameter Spacing gives the distance between starting
17 elements of consecutive vectors. The input parameter Interleave gives
18 the distance between consecutive elements within a vector. Due to some
19 constraints on the SMBS MSS register, bit 24 must also be set in the
20 parameter. Such a machine word can only be created at assembly time.
21 It can be created directly by using a parameter ARG(value) with the
22 - macro definition
23 -
24 - #define ARG(X) (0x1000000 I (X))
25 -
26 - or by using a Parameter that points to such a value created at assembly
27 time. As a slight compensation a value other than 1 can be placed in
28 the field from bit 24 to 30. This value will be used as the RMBS value
29 while the rest of the Interleave value is used as SMSS. This allows
30 for each vector to be addressed more generally. If the $MBS MSS register
31 already contains an appropriate value, it can be passed. The parameter
32 In Data points to the start of the first input vector. The output will
33 be--laced at Out Data. The output will consist of a vector of length
34 Number of pairs 5f maximum values and the index between 0 and Length of
35 where that value appeared.
36 -
37 -
38 - To find the maximum row values for a ROWxCOL matrix using N VSP chips
39 PEAK2D(COL/N, ROW, ROW, ARG(l), &(In+CHIP*ROW*COL/N), &(Out+CHIP*2*COL/N))
40 -
41 - To find the maximum column values for a ROWxCOL matrix using N VSP chips
42 PEAK2D(ROW/N, COL, 1, ARG(ROW), &(In+CHIP*ROW/N), &(Out+CHIP*2*COL/N))
43 -
44 - assuming that ROW and COL are evenly divisible by N. Using more than
45 one chip on each local bus will probably not improve performance because
46 the operation is bus-bandwidth bound. When using two chips, CHIP should
47 be set to 0 or 1 in the above formulas.
48 -
49 - To find the overall maximum, treat as one long row using 1 VSP chip
50 PEAK2D(l, ROW*COL, any value, ARG(l), &In, &Out)
51 -
52 - To find minimum values, just change the MAX Instruction to MIN.
53 -
54 -
55 - Note: It is technically possible to accomplish the setting of the upper
56 bits of $MBS MSS at execution time with sufficient ingenuity. It requires
57 using (slow)-floating point operations to manipulate the higher bits. A
58 lookup table is another possibility.
59 -
60 -
61 -
62 - zsp325()
63 )#
64 -
65 - SUBROUTINE PEAK2D(zr325int Number,
66 - zr325int Length,
67 zr325int Spacing,
68 zr325val Interleave,
69 - zr325ref In Data,
70 zr325ref OutData)
71 - {
72 -
73 -/*se up automatic save to $SAR */74 SET [ "BAR ]
75 -
76 - /*set up parameters In correct registers
77 note: LDRs depend on parameter order to put In Data into
78 $A, Interleave Into $MBS_MSS and Number Into $LC.
79 - */
80 - LDR Out Data -> [$SAR, A, MBS MSNS];
81 LDR Length -> [SPR, $LC] -
82 -
83 -
84 - /*loop Number times handling Length each time, addressing properly */
85 MAX R:($NNPT,$REPEAT) iA:($M5S,$MBS) -> $MNMX;
86 ADDM SA SPacino
87 LOOP:[IEDL] ['L2i, #2;88 -
89 - I/
909
91 -
92 -

-............................................................................----------.. ................- Page96:--
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1 - /*Routine to compute magnitude squared for a complex vector. If the vector
2 in the FFT of a signal, this is the power spectrum of the signal. This
3 routine is faster than the rectangular to polar conversion and should be
4 used if the magnitude squared is as useful as the magnitude. For example,
5 the point of maximum magnitude is also the point of maximum power.
6-
7 - This routine can be performed in place, producing an output vector half
8 the length of the input. This would leave gape If multiple VSP chips
9 were being used. If the calculation is not performed in place or gap

10 are acceptable, there is no problem using multiple chips to caiculate
11 parts of the output vectors.
12 -
13 - Note: this routine is I/O bound even on a single VSP. With two sharing
14 a bus, it will be even worse. If it is being used immediately after an
15 FFT operation it would be more efficient to perform the magnitude
16 squared operatLion as the last step of an FFT routine before storing the
17 result. This would save a store and reload.18 -
19 - The input parameter Length contains the number Of elements in the
20 input vector. The parameter In Data points to the start of the
21 input vector. The output will Be placed at OutDsta.
22 -
23 -
24 -
25 - zsp325()2627 }

28 - SUBROUTINE POWER(zr325int Length, zr325ref InData, zr325ref Out Data)
29 - {
30 -
31 - /*use both RAM banks to improve throughput */
32 -
33 - /set up two RAN sections, swapped by $LC */
34 SET I -INMS, -XOR ];
35 -
36 - /*set up pointers to data areas, compensate SB for pro-increment ,/
37 /*Note: Load depends on parameter order to get InDate into $A */
38 LDR Out Data -> [$B, SA]
39 - SUBR $B7 #32;
40 -
41 - /*initialize loop count to number of 32s, skip loop if none */
42 -SHRSRTR:[SHIFT-51 Length -> SLC;
43 JMPC [ZR , Do Rest;
44 -
45 - /*start up with first RAM bank */
46 LD C:(32)1 A -> SC0i
47 M3gR:(32 $C0 ->0R0;
48 -
49 - /*if no more to do, skip rest of loop /
50 JMPC:[IE,DL] [LZ], Do Store;
51 -
52 - /*loop with software pipeline, XOR with SLC alternates RAM /
53 LD C: 32) $A+-64 -> $C0;
54 MGNR:J32) $C0 -> $R0O
55 ST R(32) R > B+-3
56 LOOP:(IE,DL] [1LZ], #3;
57 -
58 - Do Store::
59 /*-save last RAM bank */
60 - STR:(32) SRI -> $B+-32;
61 -
62 - Do Rest::
63 - /Miandle remainder left after blocks of 32 */
64
65 - /*shift remainder into $NMPT, use [TC] to zero high bit (32s) 5/
66 - SHSETR:[SHIFT-18,TCJ Length -> SPR;
67 JMPC (ZR], End;
68 -
69 - /*finish up remainder */
70 LD C:($NMPT) $A+-64 -> $CO;
71 MGQ R:($SMPT SCO ->SRO
72 STRA($NMPT) $R0 -> $B+-32;
73 -
74 - End::
75 -7677 •
78 -

79 - }

- - -..................... ...------------------------------------------------------
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Date -/*Code to notify 68020 of task completion. This code is never actually

2 called from anywhere. Instead, its address is used as the return
Saddress in the call frame that the 68020 sets up when invoking another4 routine. When the routine completes and returns, it will execute this
5 code. This method allows all routines to be called without having
6 -them terminate the task until final completion.7 - /

9 - /*status bit value to indicate finished /10 -#define FINISHED 2
11 -
12 - zsp325()
13 -
14
15 - SUBROUTINE FINISH()16 - {
17- I)et value for status bits /
18 LDR #FINISHED -> $X;
19 -
20 - /*make sure all operations are complete */
21 SYNC:[AS,CU,EU,MU];
22 -
23 - /*write to global status latch */
24 STR SX -> 0x40000;
25 -
26 - /-halt */
27 - T;
2829 - /

30 - )

Page:
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1I /-Routine to perform polar to rectangular conversion on a complex vector.
2 -Uses separate sine and cosine tables. Could use one table for both
3 -but that would require extra time. only operates on angles in the kirst

4 -uadant since those are the only ones produced by the rectangular to
5 -plrconversion. The table size will determine the/ accuracy of the
6 -conversion. The error will be loes than 100% * pi / (4 - table size).
7-
8 The vector length is passed in the parameter Length. The parameter
9 -InData points to the start of the vector to be converted. The result

10 is ?alaced at Out-Data. This algorithm can be performed in place if
11 de sired.
12-
13 -This routine uses software pipelining to maximize throughput. This
14 -should cause the bus to be busy moat of the time. If two chips are
15 - e.rforming this at the same time, there will not be enough bandwidth.
16 - echmarking will need to be used to determine whether this is faster
17 -than a version which does not attempt pipelining but uses larger blocks.

19-
20 -/*need trig functions for tables *
21 # include 4math.h>
22-

23 /*size of sine and cosine tables/
24 #define TABSIZE 128
25-
26 -/*size of increment between table entries *
27 # define IN(CREMENIT (asin(1.0)/(TABSIZE-i))
28-
29 -/*assembly generation function/
30 -Zup325()
31-{
32 - mt index;
33-
34 -/*Generate trig function tables. ~
35 /#I
36 -SinTab::
37 #/9

38 - for (index - 0; Index < TAB-SIZE; index++)

41 - DATA { (%ERE Float(sin(index*INCREMEJIT))) }
42 # /
43-
44 -I
45 -CosTab::
46 # /
47 -for (index - 0; index < TAB siZE; index++)
48 : $849 -I
50 - DATA { (IEEEFloat(cos(index*INCRtEMENT))) )
51 # /
52-
53-
54 -/#
55 -SUBROUTINE POL2RECT(zr325int Length, xr325ref In-Data, zr325rsf OutData)
56-{
57-
58 - /use both RAM banks to optimize throughput/
59 -/*Note: chosen interleaving pattern assumes LUT instruction
60 -makes no use of EU since it is a data movement instruction.
61 -Also assumes that arithmetic operations that use external
62 -operands can't be overlapped with move instructions, though
63 -this isn't clear.
64 -Benchmark might be needed to check the interleaving pattern.
65-
66-
67 -/*set up two RAN sections, swapped by SLC, round to nearest/
68-SET [-14,-XOR, -ROUND;
69
70 /-/load polinters to data, shifting $A to angle, compensate pre-inc/
71 -ISETR IData -> $A;
72 -LDR Out Data ">53

73 SIUR ($3, $A), 884;

75 /*niiaiz loop count to number of 32s, skip loop if none76 -SHSRETR: [SHIFT-S1 Length -> $LC;
77 -JMPC [ER ,Do Rest;
78-

/*strt up conversion with first RAN bank '
80 /od angle into imaginary prt ~
81 -LD IM(3 $ A+-64:(2,1) ~50

82 /*ulipl b factor toget table offset '
83 - WLT (R,RJ :( 32) $CO, *(IEEE Float(1.0/INCREI48UT) -> IC;.84 -/*co-nvert to integer to get-integer part right ) ustified *
85 -FPINT R:(32) 510 -> $10;
86-
87 -/*if no more to do, ski rest of loop *
88 -JWIC:[IE,DL] (LE], Do Suoe,
89-
90 -/*loop with software pipelining /
91- Loop::
92 - Iload and start next vector '
93 32 2D1I:"6120i t.64:/2N1REMENT0
94 -MT ,N) :(32 $C 0 C IE1 F oat10ICEET)~SC
95 % /do m operation ior previous during execution of current ~
96 -LUT R:C32) CosTab, $11 -> $R1
97 -/*do- next oprtion on current vector '

9- INT R: 321 I
99 -/*finish end O toe previousecor'

100: ýUT Rt(32) lInTab, 411 ->$1;
101 aisume external operand fetch mono lizes bus unit *

102 -UL R C:3) SCI, SA-1:(2,I)->$91
102 B OT Cr% Al -> $B3-416;
104 -/*aecremnt count (switches banks) and loop immediately if not don*
105 -JNPC:[DL,IEIJ[ILE), Loop;
106-
107 -Do Store::

1: /iYinish up lest RAN bank '
10 /*look up cosine of angle in table *

--...... ............ . .. ............................-........-..
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110 -LUT R:(32) CosTab, $11 4> SRI;
111 /715ok up nine of angle in tale112 LUT R:(32) SinTab, $11 => $11;
113 / WRitpl cosine and sine by Magnitude to get real and imaginary *
114 MULT (RR:(321 $Cl, $A-1:(2,1) => $Cl;
115 /-stare result nq complex number in rectangular coordinates *

S17116 STC:(32) $C1 -> $B+-54;

118 - Do Rest::
120-

121 - /*shift remainder into $NMPT, use [TC] to zero high bit (32s) */
122 SELSETR:[SHIFT-18,TC] Length => SP
123 JMPC [ZR], End;
124 -
125 - /*finish remainder */
126 /*load angle into imaginary part /
127 - FD I:(NTT $A+64:(2,1) $10;
128 - /*Sultiply by factor to get table offset */
129 - MJLT (R,R): ($NMPT) $CO, I(CEEE Float(1.0/INCREMET)) -> $10;
130 - /*coffvert to integer to get integer part right justified I/
131- FPINT :(SNMPT) $10 -> $10;
132 /*looI uR cosine of angle in table */
133 - LUT R:($NMPT) CosTab, 510 - SR0;
134 - /up•ok uP sine of angle in table */
135 UTR:($MT) SinTab, $10 -> $10;
136 / ply cosine and me by magnitude to get real and Imaginary 1/
137 -MUT (R,R)-(:NMPT) $CO $A-1:(2.11 j> $CO;
138 - /store resulting complex number n rectangular coordinates /
139 ST C:C($S PT) $CO -> $ +-64;
140 :
141 End::
142 -
143 - i
144 1/
145 - )

I
I

Page: 2

!



Data: 6/30/92 File: : POL2?ECT.ABMSize: 3807 Last Modified: Wed May 20 15:13:24 1992
i• ill aii a l a a fala i aass ea aa•uisaiaaan mli•a i i as aeal a ai aain a.ll ilI ii I

I - /*Routine to perform polar to rectangular conversion on a complex vector.
2 - Uses separate sine and cosine tables. Could use one table for both but
3 that would require extra time. Only operates on angles In the first

quadrant aince those are the only ones produced by the rec
t
angular to5 1oa oonversion. Other anIgles will produce unexpected results. The

6 tble size will determine the accuracy of the conversion. The error
7 will be lens than 100% * pi / (4 * table size).8 -
9 - Length of the vector to be converted is passed in Length. In Data

10 -points to the start of the input vector. output is placed at-location
11 OutData. Conversion can be performed in place if desired.
12 -
13 - This version assumes performance is bounded by local bus bandwidth and
14 therefore doesn't attempt software pipelining alternating RA banks.
15 Instead it uses the entire RAM at once to minimize bus traffic for
16 - instruction fetching. This also makes the code more readable. Testing
17 will be needed to see which method is faster. Using half of RAM and
18 - loading magnitude in other half before MULT might save more bandwidth.
19 -
20 -
21 -/*need trig functions for tables */
22 #include <math.h>
23 -
24 - /*size of sine and cosine tables */
25 - #define TABSIZE 128
26 -
27 - /*size of Increment between table entries /
28 - #define INCREMENT (asin(l.0)/(TAB_SIZE-I))
29 -
30 - /*assembly generation function /
31 - zsp325()
32
33 -nt index;
34 -
35 - /-Generate trig function tables. /
36 -/#
37 - inTab::
38 1 0/
39 - for (index - 0; index < TAB SIZE; index++)
40
41 -I

42- .DATA { (IEEEFloat(sin(index*INCREMEiT))) };
43 - 0/
44
45 }/#
46 - CosTab::
47 - V!
48 - for (index - 0; index < TAB_SIZE; index++)4950 )#

51 - .DATA { (IEEE Float(con(index*INCREMEMT))) );
52 - 0/
53 - )
54 -
55 -
56 - /t
57 - SUBROUTINE POL2RECT(zr325int Length, zr325ref In Data, zr325ref Out_Data)58 - {
59 -
60 - /*set up one RAM section set rounding to nearest I
61 SET ( -RNS, -IXOR, -ROUND 3;
62 -
63 - /*load pointers to data, compensate for pre-increment /
64 /*increment $A at load so it points to angle part /
65 - ISETR In Data -> SA;
66 LDR Out 0ata -> BS;
67 SUBR [$1, $B], *128;
68 -
69 - /*initialize loop count to number of 64s, skip loop if none /
70 SBRSETR:fSSIPT-6] Length -> $LC;
71 J1PC [ZR], Do Rest;
72 -73
73 loadp: angle into imaginary part *1

75 LD I:(64) -A.-128:(2,1) -> $I;
76 -*iultiply by factor to get table offset */
77 MULT (R,R$=(54) SC, #(IEEE Float(I.0/INCREMENT)) -> $I;
78 *convert to integer to get integer part right justified /
79 FPIXT R:(64) _g $I;
80 /*leoo up conine of angle in table '/
81 LUT R: (6) ConTab, $I -> $R;
82 M .1ok up sine of angle in table /
83 - UT R:1(6) SinTab, $I -> $I-
84 /*muiltply cosine and sine &y magnitude to got real and imagina•y */
85 MULT (R,R):(64) $C, $A-1:(2,1)-,$C;
86 /*store resulting cooplex number in rectangular coordinates */
87 ST C:(64) $C -> SB+.-128;
88 /*Iecrement SLC loop immediately on not zero 1/

89 JMPC:=DL,IE] (1.1W, Loop;90-
91 - Do Rents:
92 - /*landle remainder left after blocks of 64 '/
93 -
94 - /*shift remainder into $NMT, skip if none
95 HLSMETR:[SHIPT-18] Length -> SPR;
96 JMPC [JE], End;
97 -
98 - /*finish remainder */
99 /*load angle into imaginary part 5/

100-ID I($1 T)$A+-128: 2,1) - $I;
101 / Uultlply by factor to $get table offseZ *
102 T (R,R):($U3WT) $C 0 IEEE Float(l.0/INCRUUKNT) ;> IL

03 ve to in gt i ger part right Junti.9
104 fINT R:($10ET) SI S;
105 /*lool up cosine of an le in table *1
106 7 7UT R:(SW.) CoeTab, I -> SR;
107 _/*l5ok up @ine of angle in table 5/

100 -tT $ T) SinTab, $1 -2 $I;
109 /*mRUltlosine and mine by magnitude to get real and imaginary /
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110 - KLT (R,R): (S$MPT) $C, $A-1:(2,l) -> $C;
111 /-st5re resulting complex number in rectangular coordinates */
112 STC:($NMPT) $C -> $B+-128;
113 n
114 End::
115 -
116-
117
118-)

Page: 2
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1 /*Routines to compute 16x16 2D complex FFT using four VSP chips.2-
3- Operation requires two phases of operation, one to calculate row
4 FFs the other to calculate column FFTs. Using multiple VSP chips
5 requires synchronization between phases so that data can be exchanged.
6 These routines do not include the sychronization. The routines for
7 each phase can be called from another routine which provides it between
8 calls or the 68020 can invoke the first phase and wait far it to
9 finish before invoking the second.

10 -
11 - Each VSP chip could calculate its four rows or columns in one instruction,
12 but using two RAM sections allows more concurrency. Each chip should
13 be passed data pointers to row or column (CcIP *-4) with CHIP equalling
14 0, 1, 2, or 3, depending on the chip.
15 -
16 - The parameter In Data points to the input vector. The output vector
17 is placed at Out-Data. The operation can be performed in place if
18 desired. Both input and output vectors are in normal order.
19 -
20 - To get an inverse FFT Just change the subroutine name and change the
21 FFT instructions to lIFT instructions.
22 -
23 - To use real data, either set the imaginary parts to zero to get a complex
24 vector, or change LD C to LD (R,0) to use a real vector. With a real
25 vector, this operatin cannot be performed in place, since the output
26 data would overwrite unread input data.
27 -
28 -
29 -
30 - zsp325()
31
32 -I
33 /*FFT for rows four 16 point FFTs on sequential data /
34 SUBROUTINE FFT16ROW(zr325ref InData, zr325ref Out-Data)35-4
36 - *set up two RAM sections, no need for exchange /
37 SET ( -INKS, -IXOR ];
38 -
39 /*set up pointers for later offset, $A gets In Data 1
40 LDR OutData -> [$B, $A];
41 -
42 - /*load two rows into section 0 /
43 - LDC:(32) SA -> $CO;
44 -
45 - /*FFT as two 16 element FFTs */
46- FFT C:(16,2):[FPS:8,LPS:l] $CO;47-
48 - /*load remainder of entries into section 1 /
49 - LDC:(32) $A+64 -> $CI;
50 -
51 - /*FFT as two 16 element FFTs /
52 - FFT C:(16,2):[FPS:8,LPS:1] $Cl;
53 -
54 - /*store first result, row bit-re.arsed */
55 - STC:(32) $C0 -> $B:(16,16-);
56 -
57 - /*store second result, row tit-reversed /
58 STC:(32) $C0 -> $B+61:(lb,16~);
59 -
60 - }
61 -
62 - /*FFT for columns f,.zr 16 point FITs on interleaved data */
63 SUBROUTINE FFTl6C6L(zr325res In Data, zr325ref Out Data)
64-ýstu w A65 set u wo RAM sections, no need for exchange */
66 SET - -IXOR 3;
67-
68 - /*set up pointers for later offset, SA gets In-Data *
69 LDR Out Data -> [$B, $A];
70 -
71 - /*load two columns interleaved into section 0 */
72 - LDC:(32) $A:(16,2) -> $CO;
73 -74 - /*FFT first set as two 16 element FFTs '/
75 - FFT C:(32):(FPS:16,LPS:23 $CO;
76 -
77 - /*load remainder of entries into section 1 ./
78 - LDC:'32) $A+2:(16,2) -> $C1;
79 -
80 - /*FF2 as two 16 element FFTs /
81 - FFT ::(32):(FPS:16,LPS:2] $Cl;
82 -
83 - /*store first result, columns bit-reversed /
84 ST C:(32) $CO -> $B:116-,2);
85 -
86 - /*store second result, columns bit-reversed "/
87 - STC:(32) $CO -> SB+2:(16-,2);
88 -89-
90 I
91 - }

.ss.s..ssss..............sm ..--- ------------- --------- m ..------------------------....... .............. ......
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ilillstaiu bitsl follow inerup briit.iiii

I - /Test program for Zoran interrupts. StAtUS bits follow interrupt bit.

43 /*absolute base addresses from memory map */
5 - #define PRAM OxOOO006 - *detine FOUR PORT 0x200007 - #define STATUSLATCH 0x40000

9- zsp325()

1212 INTERRUPT SUBROUTINE SET HALT()

14
15 )*write Is to status latch and wait *

17 - S XE >
Is Poll::
19 - JMPC [II, Poll;
20:21 - /'after resume, clear status bits */
22 - LDR #0 -> SX;

23 STR $X -> STATUS LATCH;
24 - I
25 -
26 - EXTEN _SubEntrySETHALT;
27 -
28 -SUBROUTINE MAIN()
29-
30 - /*set interrupt vector (hapgens to be 0, but why not) */
31 LDR &_SubEntrySET HAT -> IP;
32 -
33 - /*Write 0 to status latch *I
34 - LDR #0 => SX;
35 STR $X => STATUSLATCH;
36
37 - /-infinite loop decrementing $LC from 0 /
38 MOVR $X -> SLC;
39 oLoop::
40 -JMP: (DL] Loop;
41 -
42 - I
43 -
44 - 8/
45 - I

- Page:
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I /*Routines to compute 32x32 2D complex FFT using four VSP chips.

3 Oration requires two phases of operation, one to calculate row
SFMTs the other to calculate column FFTs. Using multiple VSP chips
5 require. synchronization between phases so that data can be exchanged.6 These routines do not include the eychronization. The routines for
7- each phase can bo called from another routine which provides it between
a calls or the 68020 can invoke the first phase and wait for it to
9 finisfi before invoking the second.

10 -
11- Each chip should be passed pointers to row or column (CHIP * 8) with
12 CHIP equalling 0, 1, 2, or 3, depending on the chip. It will handle13 the 8 rows or columns starting at that point. Adding a parameter to
14 Wove the number of rows or columns to do wou7' allow the same routine15 o be used by 1 or 2 chips without needing tc make multiple calls.
16
17 - The parameter In Data points to the input vector. The output vector
18 is placed at Out-Data. The operation can be performed in place if19 desired. Both iOput and output vectors are in normal order.
20 -
21 - To get an inverse FPTj ust change the subroutine name and change the
22 FFT instructions to IFT instruct ions.
23 -
24 - To use real data, either set the imaginary parts to zero to get a complex25 vector, or change LD C to LD (R,0) to use a real vector. With a real
26 vector, this operation cannot be performed in place, since the output
27 data would overwrite unread input data.
28 -
29 - */
30 -
31 - zsp325()
3233 -•
34- /*FFT for rows eight 32 point FFTs on sequential data */
35 SUBROUTINE FFT32ROW(zr325ref In Data, zr325ref Out Data)
36 - { -
37 -
38 /*set u? two RAM sections, swapped by $LC '/
39 SET -IMS, nXOR ];
40 -
41 - /*set pointers to input and output, compensate for increment */
42 /*note: depending on parameter order to get In Data into $A */
43 LDR Out Data n> J$B,
44 - SUBR $B7 #64;
45 -
46 - /*initialize loop count */
47 - LDR #7 -> $LC ;
48 -49 /*start up FFT with first RAM bank */
50 LD C:(32) $A _> $C1;
51 FFT_C:(32) $CI, ROM40:0;
52 -
53 - /*loop 7 time. XOR with $LC alternates RAM ,
54 LD C:(32) $A+-64 -> $CO-
55 FFT C:(32) sCo, SRO40:6;
56 -ST C:( 3 2

) $Cl Z> $B+-64:(32,1);
57 - LOOP: DL:] LZ 3
58 -
59 - I* save last RAM bank /
60 - STC:(32) $Cl -> $B+-64:(32,1)~;
61 -
62 - }
63 ~
64 - /*FFT for columns eight 32 point FFTs on interleaved data /65 SUBROUTINE FFT32C6L(zr325ref In Data, zr325ref Out Data)
66 _
67 t*set up two RAM sections, swapped by SLC */
68 SET I -I1MS, -XOR ];
69 -
70 /*set pointers to data, compensate for first increment *171 /-note: depending on parameter order to get InData into $A */
72 LDR Out Data -> |SB, A]
73 - SUER $BT #2;
74 -
75 - /*initialize loop count */
76 LDR #7 -> $LC ;
77 -
78 - /*start up FFT with first RAM bank */
79 LD C:(32) $A:(32,1) > $C1 ;
80 FPT-C:(32) $C , $RWOI0:0;81 -
82 - /*loo 7 times XOR with iLC alternates RAM */
83 - W C:321 $A+-:32,1) -> $CO;
84 IFT C:2 C, ) ROM-0: C;
85 ST C:(32) OP"1 > $B+-2;(52,1)~;
86 LOOP: IE:1,DL:1] ILZ], #3;
87 -
88 - /* save last RAM bank */
89 - 8TC:032) $Cl -> $B+-2:(32,1)-;
90 -
91
92 1/
93 - 1
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S- /*Program to perform complex correlation between two complex vectors with
UP to 32 elements in the shorter one and up to 1024 elements in the output

3 using a single zoran processor. Due to requirements of the instruction
4 used the longer complex vector must be padded at both ends with (shorter
5 ength - 1) complex zero elements. These are needed for when the shorter

6 actor extends yond the end of the longer during the operation. If the
7 vectors are the same length, either may be considered the longer one.

9 - The length of the short vector is passed in the parameter Coef Length.
10 The length of the desired output vector (typically equal to the sum of
11 the lengths of the input vectors, minus one) is passed in Out Length.
12 The short input vector is pointed to by Coefficients. The parameter
13 In Data points at the firstzero pad of the longer input vector.
14 The output is placed at Out Data. The output data could be stored in
15 -the p lace of tho first input vector if desired. Typical call to perform
16 a full autocorrelation in place with a 32 (padded to 94) element vector:
17 CALL CCORR( 32 63, &in, &(in+31), & in)
18 The (in+31) skips the padding at the front of the vector.
19 -
20 - Note: if this routine will always be used for two equal length vectors,
21 only one length parameter is needed. The other can he computed from it
22 with some extra overhead. On the other hand, if this routine will be
23 used repeatedly for the same length, sending a precomputed SPR value
24 instead of a length would reduce overhead slightly.
25 -
26 -
27 - zsp325()
28 -4
29
30 - SUBROUTINE CCORR(zr325int Coef Length,
31 - zr325int Out Length,
32 zr325ref CoeTficlents,
33 - zr325ref In Data,
34 zr325ref OutData)
35-
36 -/*set u mode properly, one RAM section, 24 bit integers */
37 SET ( = , =1XOR, =1 MT ];
38 -
39 - /*set SSAR to put output in correct place '/
40 LDR OutData => $SAR;
41 -
42 /*load vector lengths into parameter register
43 $NMPT - CoefLength, SREPEAT - OutLength
44 */
45 - SHLSETR:[SHIFT-18] Coef Length => SPR;
46 ADDR $PR, Out Length;
47 -
48 - /*load complex conjugate of coefficients */
49 LDC:($NMPT) *Cooeflcients -> $C0;
50 -
51 - /*correlate with input sequence /
52 FIR C:($NMPT,$REPEAT) $CO, *InData;
53 -
54
55 - }

-----------------------------------------------------------.. ------------------------------------------------
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1 -
2 - /*Routine to compute a 1K complex FFT using four VSP chips.
3-
4 -Operation requires two phases of operation, one to calculate column
5 cFFT, the other to calculate row FFTs with twiddle factors. The
6 column phase can be performed by calling the FFT32COL routine just
7 as for a 32x32 2D FFT. The routine for the row phase differs between
a chips because the twiddle factors required are different. This
9 progra can generat 1 all four routines by running it with different

10 settings for the macro CHIP.11 -
12 - Using multiple VSP chips requires synchronization between phases so
13 that data can be exchanged. This can be provided by a VSP routine
14 that synchronizes between calling FFT32COL and FFTIn_ or the 68020
15 can invoke the first phase and wait for it to finish 

6
efore invoking

16 - the second.
17 -
18 - Each chip should be passed an input pointer to row (CHIP * 8) with
19 CHIP equalling 0, 1, 2, or 3, depending on the chip. The output
20 -pointer should be to column (CHI P* 8) since the results must be
21 transposed to convert column and row bit-revereals into an overall
22 bit-reversal. Each chip handles the 8 rows (turning into columns)
23 starting at that point. Adding a parameter to give the number of
24 rows or columns to do would allow the same routine to be used by 1
25 - or 2 chips without needing to make multiple calls.
26 -
27 - The parameter In Data points to the input vector. The output vector
28 is placed at Out-Data. The operation cannot be performed in place
29 because of the nieded transpose. The column pass can be performed
30 in place to avoid needing a buffer area for the intermediate results.
31 -
32 - To get an inverse FFT .Just change the subroutine name and change the
33 FFT instructions to IFFT instructions.
34 -
35 - */
36 -
37 /*chip number /
38 #define CHIP 0
39 -
40 - I*function name for this chip, change for each */
41 - #define FUNCNAME FFTlKO
42 -
43 -
44 -
45 - zsp325()46 •
47
48 - /*FFT for rows, eight 32 point M71s with twiddle factors */
49 SUBROUTINE FUNCNAME(zr325ref InData, zr325ref Out Data)
50 -
51 -
52 - /*set u? two RAM sections, swapped by SLC "I
53 SET [ -. NMS, -XOR I;54-
55 - /*set pointers to input and output, compensate for increment *1
56 /-note: depending on parameter order to get In Data into SA '/
57 LDR Out Data => A$S, 5A);
58 - SUBR SBT #2;
59 -
60 - /*initialize loop count */
61 - LDR #7 -> SLC ;
62 -
63 - /*start up FFT with first RAM bank */
64 LD C:(32) SA -> $CI;
65 /*Increase initial twiddle factor in RBA by 8 rows per chip */
66 - FPTC:(32) $Cl, SRO•4-(CHIP*8*16):0;
67 -
68 - /*loop 7 times XOR with SLC alternates RAM /
69 LD C: j32) $A+64 -> $C0;
70 /-Use RBA, increasing i for each set of 32 */
71 /*increment of 16 puts it at 1 on last pass */
72 FFT C:(32) $CO, SROM+-16:0;
73 ST : (32) $Cl -> SB+-2:(32,1)~;
74 LOOP: DL:1] (ILZ], #3;
75 -
76 -* save last RAM bank *1
77 STC:(32) SC1 -> $B+-2:(32,1)-;
78 -
79 -
80
81 - )

--------------------------------------------------------------------------------------------- Page: I
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I - /*Program to perform real correlation between two real vectors with up to
2 64 elements in the shorter one and up to 1024 elements in the output
3 using a single zoran processor. Due to requirements of the instruction
4 used the longer real vector must be padded at both ends with (shorter
5 length - 1) real zero elements. These are needed for when the shorter
6 vector extends beyond the end of the longer during the operation. If the
7 vectors are the same length, either may be considered the longer one.

9 The length of the short vector is passed in the parameter Coef Length.
10 The length of the desired output vector (typically equal to the sum of
11 the lengths of the input vectors, minus one) is passed in Out Length.
12 Coefficients points to the short input vector. In Data points to
13 the first zero pad in the longer input vector. Thi output is placed at
14 Out Data. The output data could be stored in the place of the first
15 inpUt vector if desired. Typical call to perform a full autocorrelation
16 in-place with a 64 (padded to 190) element vector:
17 CALL CCORR(64 127, in, &(in+63), &in)
18 The (in+63) skips the padding at the front of the vector.
19 -
20 - Note: if this routine will always be used for two equal length vectors,
21 only one length parameter is needed. The other can be computed from it
22 with some extra overhead. On the other hand, if this routine will be
23 used repeatedly for the same length, sending a precomputed $PR value
24 instead of a length would reduce overhead slightly.
25 -
26 -
27 - zsp325()
2829 - /

30 - SUBROUTINE RCORR(zr325int Coef Length,
31 zr3251nt Out Length,
32 zr325ref CoeTficients,
33 - zr325ref In Data,
34 - zr325ref Out Data)35 )-(

36 
5
*set up mode properly, one RAM section, 24 bit integers */

37 SET [=14MB, XOR, -IPMT
38 -
39 - /*set SSAR to put output in correct place */
40 LDR Out lata -5 $SAR;
41 -
42 - /*to get real coefficients in zig-zay order, need to load half
43 as many (rounded up) "complex" coefftcients
44 -*
45- SHLSETR:[SHIFT=17] Coef Length -> SPR;
46 ADDR SPR, #0x020000; -
47 -
48 - /*load coefficients in zig-zag real order */
49 LDC:($NMPT) *Coefficients => $CO;
50 -
51 - /*load vector lengths into parameter register
52 SNMPT - Coef Length, SREPEAT- Out Length
53 */ - -
54 - SHLSETR:[SEIFT=18] Coef Length => SPR;
55 ADDR SPR, Out Length; -
56 -
57 - /*correlate with input sequence */
58 FIR R:($NMPT,$REPEAT) SZ0, *In Data;
59
60 -/
61 - }

-------------------------------------------------------------------------------------------------------- Pae I
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1 - /*Routine to set up reciprocal table and one to generate inline code
2 to compute the reciprocals for a vector. The algorithm is to perform
3 -a table lookup to got a starting estimate and then perform Newton-RaphsonSiterations until accuracy i 24 bite. This requires that

TABBITS (1 NUMI ) >- 24.6-
SMight be better to split reciptab into a zsp325 routine to create table
8 and link in after assembly. The reciprocal function would still be
9 included by the using routine. This would prevent including table

10 more than once if it is used by multiple other routines.11 - *
12 -
13 - /*define number of bits of accuracy in table, table size, and iterations */
14 - #define TAB BITS 6
15 - #define TAB-SIZE 1l << (TABBITS-}))
16 #define NUM'_ITER 2
17 -
18 - /*Function to create reciprocal table for initial estimate. Must be
19 called once if reciprocals are to be used.
20 - *
21 - void reciptab()22 -
23 long i;
24 union

5 loat flt;
27 - long int;
28 - max, min;
29 -
30 - /*generate label for start of table */
31 /#
32 - RecipTab::
33 - #/
34 -
35 - /*generate the table entries /
36 for (i = 0; i < TAB SIZE; i+4)37 -
38 calculate max ai.d min values that will use this entry */
39 - min.int = (127L << 23 + i << (24 - TAB !ITS))
40 max.int (127L << 23) + (i+l) << (24 -TABBIS));
41 -
42 - /*use midpoint between their reciprocals to minimize error */
43 - /#
44 - .DATA { IEEEFloat(0.5 / max.flt + 0.5 / min.flt) }
45 - #/
4647
48 -
49 -
50 - /*Function to produce inline assembly to calculate the reciprocals for
51 a vector in internal RAM. The internal RAM must be set up to have two
52 banks and the input vector must be in RO. This limits the input vector
53 length to 32 or less. The result vector ends up in RO. All Internal
54 RAM banks are overwritten with intermediate results.
55 -
56 - This function is essentially a macro. It is called from within a
57 zsp3251( function and generates assembly code. It does not produce
58 any calls that execute at run time. The function reciptab must also
59 have been called by the zsp

3 2
5() function or there will be an error

60 - during assembly.
61 - /
62 - void recip(int length)
63-
64 -Int 1;
65 -
66- /
67 -split intoexpnent and mantissa, negate exponent, trap zero /
68 _SPLIT R:((lengtr)):(OV] SRO - Sd;
69 -
70 - /*look up initial estimate of reciprocal of mantissa /
71 LUTR:((1ength)):(SUIFT-(24-TAB BITS)] RecipTab, $I1 > $10;
72 -
73 /*change sign of estimate to match initial input sign */
74 SIGN R:((length)) SRO, $10 -> SR0;
75 - #/
76 -
77 - /*generate Newton-Raphson iterations inline 5/
78 for (i - 0; i < NUM ITER; i++)79

81 /*new estimate - estimate * (2.0 - estimate * input) */
82 SBM R:((length)) SRO $I1 #2.0 $ $10;
83 MULT R: ((length)) $R6, $I -> $RO;
84 #/85 - I
86 -

88 /*recombine resulting mantissa with exponent */
89 JOIN R:((length)) SRI, SR0 -> $R0;
90 V/
91 - )

Page: I
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1 - /*Test program to see It Zorans work */
, ~2-

3 /*absolute base addresses from memory map */
4 - sdefine PRAN OXOOOOO
5 - *define FOUR PORT 0x20000
6 define STATUS LATCH 0x40000
a zsp325()

11 - float x;
12 -
13 /*put a vector of (1.0, x) at PRAM + Ox400 */
14 /#
15 - .ORG(PRAM + Ox40

0 )
16 - 1/17 for (i - 0, x - 0.0; i < 16; 1++, x += 1.0)
18
19 )#
20 - .DATA{ 1.0, IEEX_Float(x) };
21 - #/
22 - }
23 -
24 - /*put a vector of (x, 1.0) at FOUR-PORT */
25 /8
26 - .ORGFOUR PORT
27 -1/
28 - for (i - 0, x - 0.0; 1 < 16; 1++, x +- 1.0)
29 -
30 -

31 - .DATAW IEEE Floatfx), 1.0 1;
32- /
33 - }
34 -
35 - /#
36 - .ORG
37 - SUBROUTINE MAIN()
38 $"write 0 to status latch */

40 - LDR #0 :> SX-
41 STR $X -> SUTUSLATCH;
42 -
43 - /*add two complex vectors and store */
44 LD C:(16} (PRAM + 0x400) => $CO*
45 AD1 C: (1) FOUR PORT C $C0 => c6;
46 ST C:( 16) $CO -5 FouPORT;
47 -
48 - /*make sure we are finished, then write is to status latch */
49 - SYNC: CU,EUMU];
50 LDR 3A > $X -
51 STR SX > STATUS_LATCH;
5253 •

54 - }
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1 - /Test program to make Zoran status bits follow 68020 bits */2-
3 - /*absolute base addresses from memory map */
4 - #define PRAM OxOOOOO
5 - #define FOUR PORT 0x20000
6 - #define STATUS-LATCH 0x40000
7 -
9 - zsp325()

10 -
11 - /8
12 - SUBROUTINE MAIN()
13 - I
14 -0&-
15 -LDR STATUS LATCH -> SLC;
16 - 8Th $LC ->-STATUS LATCH;
17 - Loop::
18 XOR:[TR] STATUS LATCH, $LC >X;19 ANDR #3. $X; --
20 JMPC:[IE:0] [ZR], Loop;
21 -
22 - JMP Top;
23
24 1/
25 - }

Paget
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1 /•'Code to mtart all VSP chips simultaneously. The start address of the
code to be executed at the signal should be the first value on the

5-
6 - /'absolute base addresses from memory map */
7 - #define PRAM OxO0000

8 define FOUR PORT 0x20000
9 - #*define STATUSLATCH 0x4000010

11 - /*status bit value to indicate start */
12 - #define START 2
13 -
14 - zsp325()
15
16 #/
17 - SUBROUTINE START()

19 - loet mask for status bit */
20 - LDR #START -> iX;
21 -
22 - Poll::
23 -ANDR:[TR] STATUS LATCH, $X;
24 JMPC (ZR], Poll;
25 -
26
27 -/
28 - )

Page. I
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1 * - UAternate routines to compute 32x32 2D complex FiT using four WIF chips..

3 - The pipe~p2r routine produces incorrect results wuhen the IE (immdiate
4 - execution) qualifier Is used on its software pipeline's loop instruction.

5 - Whatever mechanism causes this doesn't now, to affect the FiT routines

6 - that use the smes qualifier. However, If for sme reason it doem no,
7 - the routines can be rewritten to avoid using the qualifier. Just taking
a - the qualifier out of the existing code will reduoe perforuance by around
9 - M5. This is because the existing loop overlaps the 772 Instruction

10 - with the following store, the loop instruction Itself, and the load in
11 - the next loop iteration. Removing the 12 qualifier causes the loop
12 - Instruction to wait until tha FFT instruction is complete and therefore
13 - prevents overlap of the FIT instruction with the loop instruction and
14 - more importantly, with the load in the next iteration. By moving the
15 - 'kernel" of the software pipeline down one instruction, the load move.
16 - past thu loop instruction into the current iteration. This allows the
17 - load to overlap the FIT instruction even though the loop instruction
18 - cannot. Hoving the kernel down one instruction requires alterations to
19 - the preamble and posteable of the loop. since thue& alterations cause
20 - the comination of the preemble and postaxible to execute two Iterations
21 - instead of one, the loop count msut be decreased by two instead of one.
22 - This alternative version of the 32x32 FIT can be used as an example of
23 - the sodifications that are needed.

24 -

25 - 5

26 -

27 - usp325(3

28 -

29 - 1#

30 - "~FT for rows, eight 32 point FiTs on sequential datea'
31 - SUBRUTINfE Mi32sowczr325ref in-Data, ar325rof Out-Data)
32 -

33 -

34 - 1 set up two RhM sections, swapped by SLC '
35 - BZT [ -INKS, -XDR

36 -

37 - 1' set pointes" to Input and output, compensate for increment
36 - I' note: depending on paraester order to get In-Data into $A '
39 - LDR Out Data -2, ISO, $A];

40 - BURSO, 064;

41-

42 -/ initialize loop count

43 -D #E 6 -> SLO;

44-

45 - ~preamble 0/
46 - WPCS(32) $A -3, $01;

47 - FFT201(32) SC1;

40 - WýC:C(32) $A+-64 " $CC;

49-

so 204loV 6 times, NO with SIC alternates RAM 0/

Paeps
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51 - FWC;s(32) SCO;

52 - 92ýCm(32) SCI .)- $*D,64i(1,32-)I

3- LDC:(32) $A+-64 -> SC1;

54 - Locr:jDL) [ILl). #3;

55 -

56 - /3 poetamble 3

57 - mOý: (32) 500;

56 - ITCs(32) SCI -ý- 38+-64%(1,32-);

59 ~ ~ ~ ~ a -Fj(32) *CO -j.3~4,l3)

60 
-

61- '

63 - / Mli for aclumns. eight 32 point FMT On interleaved data 3

64 - 8uDB7flh3 YFT32COL(zZ325r~f Ink-Data. sr325ref OUt-Pata)

66 - / m et up two RAN sections, swapped by SL='

67 - UIT I -lEES, 1XOR 3

69 - / m et pointers to data, compensate for first increment 3

70 - /3 note: depending on parameter order to get In-DatA into $A

71 - LDR OutDeta - [SI, $AD;

72 - WU $9, 12;

73 -

74 - /a initialize loop count 3

75 - LDR #6 -,SWC

76 -

77~ - preamble 3

78 - LD-Ct(32) Sk:(32,1) -; SC1;

79 - ,Ts:(32) SCI;

80 - LDC;(32) $A.-2%(32,l) -~ SCO;

12 - 3 loop 6 tinge, 101 with SIC alternates PAN 3

63 - F71.Ce(32) SCOI

84 - SICs(32) SCI -D S9+-2%(32,l)-;

es - WCs(32) 5A.-2s(32,l) -ý SdI;

66 -
LOs(DLI (LI~, 031

67-

as / poetamble 3

89 - VFTC: (32) SCO;

90 - ST_C:(32) 501 $95+-2:(32,1)-;

91 - U?_C:(32) SCO -~$9+-2t(32,1)-;

92 -

93 -

94- V

95-

peaws 2
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I - /* VPH code for convolution of a ocomplex sequence of up to 32 points with

2 - another longer ooGaopln easne, pxldOing Up to 1024 outputs. This

3 - size can be done with a single FIR instruction. This code can be

4 - called repeatedly on a single proceseor to handle convolutions where

5 - moe than 1024 output points are required as long as the sborter

6 - sequence in still no more than 32 pointa. However, a different routine

7 - designed fo' a longer convolution would be more efficient. This

0 - emen cone can be used on multiple VSP chips simultaneously to give

9 - a considerable speed increase. There my be no benefit to executing

10 - on more than one VSP chip per bus since the FIR Instruction my not

11 - give up the bus between output points.

12 -

13 - To got a full convolution of the input requires padding both ends of

14 - the longer input mequence with a number of complex zerowe equal to the

15 - length of the shorter aequence minus one. This us required in order

16 - to explicitly provide the zeroes that are assumed to be aultiplied by

17 - elements of the shorter sequence that emitend beyond the ends of the

1i - longer om during the oonvolution procesM. The length of the output

19 - sequence sbould be equal to the eurn of the length. of the (unpadded)

20 - input equences minus nme. If a circular convolution is deasired

21 - instead of a linear one, the zero padding should he replaced with

22 - points from the other end of the input sequence.

23 -

24 - The shortar input length Is passed in CoefL.mgtb. The output length

25 - (equal to input length before padding plus coefficient length minus one)

26 - is passed as Out Length. Coefficients points to the shorter sequence.

27 - In-Data points to the start of the longer sequence (poasibly a zero

28 - pad). The output is placed at OutData. Typical call:

29 - CALL COW•V(4, 1024, ACoef, &In, &Out)

30 -

31 - The convolution can be performed in place with careful choices of

32 - parameter values. If the convolution requires multiple calls on a

33 - single VSP chip, the output m-,t begin at the first location of the

34 - long input. This avoids ovezwriting inputs that will be needed for

35 - the next call. Bowever, if multiple chips are being used, the output

36 - meut overwrite the last input used in its amputation. This works

37 - because the VSP chip ham already read the input into internal RAN

39 - for further ume. It is neocssary because that input is the first

39 - one which will not be needed by the chip working on the previous

40 - portion of the convolution. Some further care is needed in the

41 - initial startup of In-place mltiple chip convolution to ensure that

42 - a chip does not write over any input values before the subsequent

43 - chip reads thee in. A multiple call, aultiple chip convolution

44 - cannot be done in place because the constraints are contradictory.

45 - Ukver, snob a large data set would not fit into shared mmory.

46-

47 - Splittir up a convolution between MUMCHIPH chips would require

48 - m thin. Ake the following invocation for chip ranging from zero

49 - to (UBC. aS - 1):

50 -

Pages I
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51 - CA.L CCV(CjCF IULE, OUT BIZB (chip), &Coef,

52 - &(In + 2 *DATA_OFP8XT(chip)), &(Out + 2.DATA-9F8Er(chip)));

53 -

54 - with the definitions

55 -

56 - fdefini O1UT LZN (INLN + COXULXN - 1)

57 - Idef inm DnkOFFNw(CHIP) (((CHIP) * OUTn Lxi) / OIN-CHIPS)

58 - 0dofine 0UT8O1Z(CHXP) (DATAO•fW T(CHIP+l) - DAVQOFFE8T(CHIP))

59 -

60 - DRV OFFSET in doubled when used with pointer parameters because

61 - each complex element requires two machine words.

62 - */

63 -

64 - zsp325()

65 - (

66- /8

67 - 8USROUTIN CCOW( zr325int Coot Length,

68 - zr325int OutLength,

69 - �r325ref Coefficients,

70 - zr32Srof In Data,

71 - zr32Sref Out Data)

72- 4

73 - / met up mode properly, one RAN bank, 24 bit integers */
74 - SET [ -148, -IXOR , -1FM 1 ];

75 -

76 - / s iet SaM to put output in correct place */

77 - LDR Out ,'ts .ý- SBAR;

78 -

79 - 1' now set up lengths for LD and FIR instructions */
60 - 8I8L8123 [SPFrrl18] Coof Lengtb -• SPR;

U1 - ADDR SPR, Out_Length;

62 -

83 - /* load coefficients in r•verse order /

84 - 831S17R: (6IP'-1] CoefL~ength -> $A;

85 - ADDR $A, Coefficients;
86 - MM $A, #2;

897 - LDC:($iDIPT) $A:(-1,1) -> $CO;
88 -

89 - /* convolve with input mequenc• /

90 - FIR C:(S$14PT, SREPEAT) $C0, *InData;

91 -

92- )

93 - V/

94 - I

Pages 2
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I - /a Program to parform complex correlation between two complex vectors with

2 - up to 32 elements in the shorter one and up to 1024 elements in the output

3 - using a mingle zoran procesor. Due to requirements of the instruction

4 - uued, the longer complex vector -- ,t be padded at both ends with (shorter

S - length - 1) complex zero elements. Thee are needed for when the shorter

6 - vector extends beyond the end of the longer during the operation. If the

7 - vectors are the em length, either my be considared the longer one.
8-

9 - The length of the short vector in paewed in the parameter CoefaLength.

10 - The length of the desired output vector (typically equal to the sum of

11 - the lengths of the input vectors, minus one) is passed in Out-Length.

12 - The short input vector is pointed to by Coefficienta. The parameter

13 - In-Data points at the first zero pad of the longer input vector.

14 - The output is placed at Out Data. The output data could be stored in

15 - the place of the first input vector if desired. Typical call to perform

16 - a full autocorrelation in place with a 32 (padded to 94) element vector:

17 - CALL COOmR(32, 63, &in, a(in+31), &in)

18 - The (in+31) skips the padding at the front of the vector.

19 -

20 - Note: If this routine will always be used for two equal length vectors,

21 - only one length parameter is needed. The other can be computed from it

22 - with some extra overhead. On the other hand, if this routine will be

23 - used repeatedly for the same length, sending a precomputed SPR value

24 - instead of a length would reduce overhead slightly.

25 -',

26-

27 - zap325()

28-(

29 -

30 - SlMMULTIM COuaa( mr325int CoeI.m.gt.•,

31 - :325int Out_•ength,

32 - ar325ref Coefficients,

33 - sr32Sref InzData,

34 - Ar325rsf Out-Deta)

35- (
36 - /* set up mode properly, one RAN motion, 24 bit integers '
37 - SET [ -1U8, -IJR, -IFlf ];

38 -

39 - I' set 3aAR to put output in correct place '/
40 - WR Out-Data -2, $AJ;

41 -

42 - /' load vector lengths into parameter register

43 - $18T - Coe0fLength, $IMPMT• - Out-Length

44- '/
45 - M8Mft: [(HiP•F 1 CoefLength -> SpR;

46 - ADDR SP, Out Length;

47 -

48 - /' load complex conjugate of oesfficients '/

49 - WD' C:($11T) *Coefficients -; $C0;

so -

Pages I
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51 - I ~ correlate with input *equenc. '
52 - 1RCsC53@'T,$8MPKAT) $CO, *1nbata;

53-
54-

55-

Pages
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2 - /* Routine to compute a 11 loalx FFT using four VSP chips.

3-
4 - Operation requires two phase& of operation, one to calculate column

5 - FFTs, the other to calculate row FFTs with twiddle factors. The
6 - colum phase a•n be performed by calling the FFT32MaL routine just
7 - as for a 32x32 2D FiT. The routine for the r•w phase differs between

8 - chip because the twiddle factors required are different. This
9 - program can generate all four routinee by running it with different

10 - settings for the macro CHIP.
11 -

12 - Using multiple VSP chips requires synchronization between phames so

13 - that data can be exchanged. This can be provided by a VSP routine

14 - that synchronizes between calling FFT32COL and FFTIKn, or the 68020
15 - can invoke the first phase and wait for it to flnlsh before invoking
16 - the second.

17 -

18 - Each chip should be passed an input pointer to row (CHIP * 8) with

19 - CHIP equalling 0, 1, 2, or 3, depending on the chip. The output
20 - pointer should be to column (CHIP * 8) since the results must be
21 - transposed to convert colun and raw bit-reversals into an overall
22 - bit-ravergal. Hach chip handles the 8 rows (turning into columns)
23 - starting at that point. Adding a prameter to give the number of
24 - rows or column, to do would allow the same routine to be used by 1
25 - or 2 chips without needing to make multiple calls.

26 -

27 - The parameter In-Data points to the input vector. The output vector
28 - LO placed at Out-Data. The operation cannot be performed in place

29 - becauae of the needed transpose. The column pass can be performed

30 - in place to avoid needing a buffer area for the intermediate results.

31 -

32 - To get an inverse FFT, juat change the subroutine name and change the

33 - FiT instructions to IFFT instructions.

34 -
35 - "

36 -

37 - / chip number */

38 - #define caIP 0

39 -

40 - /a function name for this chip, change for each '/

41 - #define FUnCIuW mIKO

42 -

43 -

44 -

45 - ZOp32S()

46 - 4

47 - /#
48 - / P ViT for ram, eight 32 point FMTs with twiddle factors '/
49 - MMY4JflU 3 FURCU'MB(ir325rof In Data, zr325ref Out Data)

50- (

Pages
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4|

51 -

52 - / set up tw RA sectionas, swapped by SLC /
53 - SET -Jim2 , ,XR );

54 -

55 - / s met pointes to input and output, compensate for Incresmnt 'I

$0 - 1 notes depending on parameter order to get In-Data into $A /
57 - LDR OutDate -> (SOB, $A);

56 -M SBE• 1, #2;

59-

60 - /' initialize loop count */

61- LR #7 -> TLC

62-

63 - /" start up YVF with first RA bank '/
64 - LD.Ct(32) Sh -3 SCI;

65 - /a increase initial twiddle factor in RA by 8 rovs per chip */

66 - FmT•Cs (32) $C1, 5RCI(rP*8*16):0;

67 -

68 - /* loop 7 times, XOR with SLC alternates RlA N/

69 - LDCs(32) $A÷-64 -> SC0;
70 - /* use MhA, increasing it for each set of 32 */

71 - i ncrement of 16 puts it at 1 on last pas/

72 - FFTC:(32) SCO, SfN•l-16:0;

73 - ST C:(32) SCl ,> $* -2:(32,1)~;

74 - LALs(DL:I] [ILZ], 43;

75 -

J 76 - / save last RAN bank*/

77 - BT.C:(32) SC > SB+-2:(32,1),
78 -

79- 1
60 - V/
61 - )

I

I s
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2 -* R~outine to compute a 11 complex FFT using four VSP chips.
3-
4 - Operation requiree two phases of operation, one to calculate column
5 - FM~, the other to calculate row FITs with twiddle factors. The

6 - column phase can be performed by calling the FFT32COL routine just
7 ase for a 32X32 2D FFT. The routine for the row phase differs between
a chips because the twi~ddle factors required are different. This
9 - progi am can generate all four routines by running it with different

10 - settings for the macro CHIP.

ii

12 - Using multiple VSP ch~pe requires synchronization between phases so
13 - that data can be exchanged. Thi, can be provided by a VBP routine
14 - that synchronize. between calling FFT32COL and FITlKn, or the 68020
15 - car, Invoke the first phase and wait for it to finish before invoking

16 - the second.

17 -

18 - Bach chip should be passed an input pointer to raw tCHIP * 8) with
19 - CHIP equalling 0, 1, 2, or 3, depending on the chip. The output
20 - pointer should be to column (CHIP a 8) since the resulte must be
21 - transposed to convert column and raw bit-reversals into an overall
22 - bit-reversal. Bach chip hendles the 8 rows (turning into columns)
23 - starting at that point. Adding a parameter to give the rumber of
24 - rows or columns to do would allow the sams routine to be used by 1
25 - or 2 chips Without needing to make multiple calls.
26 -
27 - The parameter In_-Data points to the Input vector. The output vector
28 - is placed at out_-Data. The operation cannot be perfocrmed in place
29 - because of the needed transpose. The column pass can be performed
30 - in place to avoid needing a buffer area for the intermediate reeults.
31 -

32 - To get an inverse FIT, just change the subroutine name and change the
33 - FIT instructions to lIM instructions.

34 -

35 - 0

36 -

37 - /* chip number '
38 - #define Carp 0

39 -

40 - .i* function nano for this chip, change for each
41 - #define FUMNCAME Pp~lKo

42 -

43 -

44 -

45 - sAp325()

46 -(

47 -
48 - / Y FT for rows, eight 32 point FF1. with twid~le factors '
49 - 8UUMUTIKK PUNOWEMZ(zr325rmf In-Date, &r325rsf OutDa,.)
50 -

Pages
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51-

52 - /* met up two Rhm sections, swapped by $LC /

53 - SET I 21-4S, ,XOR ];

54 -

55 - / set poiuters to input and output, compensate for increment '/
56 - / n note: depending on parameter order to get InData into SA 'I
57 - LDR Out Data -; (SR, SAA]

58 - UMR SB, #2;

59-

60 - I' initialize loop count "/

61- LD #7 -> $LC;

62-

63 - / s etart up FFT with first RAN bank /

64 - LDC:(32) $A -> Sdl;

65 - /* increase initial twiddle factor in RDA by a rows per chip 'I
66 - FT- C:(32) $Cl, SJK4-(cRIP*8'16):O;

67 -

68 - / loop 7 times, )MR with SLC alternatas RAN

69 - LD C:(32) $A*-64 -> $CO;

70 - use R•A, increasing it for each sat of 32

71 - inrement of 16 put it at I on last pass/

72 - ITý_Ca(32) $CO, $RO4+-16:0;

73 - BTCs(32) $C1 -I $B+-2:(32,1)-;

74 - I0W:I1EDL [Il,2], #3;

"75 -
- 76 - /* save last Uk bank '/

77 - 1TCs(32) SC1 -> $B+-2s(32,1)';

78 -

79- )

P0a- t#
61 - )

7 Fages

!



Deteg 7/20/92 Files B:F1T1l.AMe

2 -* R.outine to compute a 1X complex FFT using four VBP chips.

3-

4 - Operation requires two phases of operation, one to calculate column

5 FIT., the other to calculate row FFTm with twiddle factors. The

6 - column phase can be performed by calling the FFT32COL routine just

7 - as for a 32x32 2D FIT. The routine for the row phase differs betwc~n

a c hips because the twiddle factors required are different. This

9 - program can generate all four routines by running At with different

10 s ettings for the Macro CHIP.

11-

12 - Using multiple VIP chips requires synchronization between phases so

13 - that data can be exchanged. This can be provided by a VIP routine

14 - that synchronizes between calling FIT32COL. and MMl~, or the 60020

15 - can invoke the first phase and wait for it to finish before invoking

16 - the second.

17 -

is - Each chip should be passed an input pointer to row (CHIP * 8) with

19 - CHIP equalling 0, 1, 2, or 3, depending on the chip. The output

20 - pointer should be to column (carp * 8) since the results must be

21 - transposed to convert column and row bit-reversals into an overall

22 - bit-reversal. Each chip handles the 8 rowe (turning into columns)

23 - starting at that point. Adding a parameter to give the number of

24 - rows or column, to do would allow the maze routine to be used by 1

25 - or 2 chips without needing to make multiple calls..

26 -

27 - The parameter In-Data points to the input vector. The output vector

28 - is placed at Out-Data. The operation cannot be performed in place

29 - because of the needed transpose. The column pass can be performed

30 - in place to avoid needing a buffer area for the intermediate results.

31 -

32 - To get an inverse FIT, just change the subroutine name and change the

33 - FIT instructions to hIT instructions.

34 -

35 - *

36 -

37 - I' chip number '

38 - #def ine CHIP 1

39 -

40 - /* function name for this chip, change for each ~
41 - def ine FUUWME FTI~hi

42 -

43 -

44 -

45 - zap325()

46 -

47 -

48 - / FIFT for rows, eight 32 point Me~ with twiddle factors/

49 - BURF71'IN3 FUMCNIMU(zr325rof In-Data, zr325ref Out-Date)

50 -

page:
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51-

4 52 - /0 met up two •M s*etians, swapped by SiC /

53 - arT -I[ l4, -XOR 1;

54 -

55 - / eat pointers to input and output, compemate for increment /

56 - /* note: depending on parameter order t get InData into $A

57 - LDR OutData -> ($B, $A];

58 - SUBR $S, #2;

59 -

60 - /0 initialize loop count '/

61 - DR 97 -> SLC;

62 -

63 - / s tart up FFT with first BAN bnk/

64 - wPC:(32) $A -> SCl;

65 - /0 increase initial twiddle factor in RRA by 8 row. per chip */

66 - FITC.(32) SCI, $•14-(CuhIP'B'16):0;

67 -

68 - /0 loop 7 times, X wiTw $ iLC alternate. AMR 0/

69 - LDm(32) SA+-64 -> $CO;

70 - / use BA, increaaing it for each set of 32 '/

71 - / ncrement of 16 pute it at I on last pas s/

72 - FiM C(32) 500, $flb*16:0;

73 - 8TC:(32) $C1 -> $B+-2:(32,1)-;

74- Wrs:(ZI,DL [JILZ), #3;

75-

76 - /* save last RA bank/

77 - 8T C:(32) S•1 "> B+-2:(32,1)P;

76 -

79- )
60 - 0/

s1 - )
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2 /aI Routina to compute a 1jK complex PVT using four VSP chips..

3-

4 -Operation require. two phases of operation, one to calculata column

5 File, the other to calculate raw FM~ with twiddle factors. The

6 column ph&"e can be performed by calling the FF32COL routine just
7 - an for a 32x32 2D FIT. The routine for the row phase differs between

4 chips because the twiddle factors required are different. This
9 - program can generate all four routines by running it with different

10 s ettings for the macro CHIP.

11-

12 -Using mualtiple VSP chip. requires eynchronization between phases so
13 - that data can he exchanged. This can he provided by a VIP routine
14 - that Synchronizes between calling FIT32COL and YNTI~n, or the 68020
1is can invoke the first phase and wait for it to finish before invoking

16 - the second.

17-

1s - ach chip should be paesed an input pointer to row (CHIP * 8) with

19 - CHIP equalling 0, 1, 2, or 3, depending on the chip. The output
20 - Pointer should be to column (CHIP 4 I) since the result. must he
21 transposed to convert column and row bit-reversals into an overall
22 - bit-revereal. Each chip handles the U rows (turning into column.)
23 - starting at that Point. Adding a parameter to give the number of
24 - zws or columne to do would allow the seem routine to he used by I
2S - or 2 chip. Without needing to make multiple cells.

26 -

27 - The parameter In-Data point. to the input vector. The output vector
28 - is placed at Out-Data. The operation cannot be performed in place
29 - because of the needed transpose. The column pass cen be performed
30 - in place to aVoid needing a buffer aera. for the intormeiate results.
31 -

32 - To get an inveree FIT, just change the subroutine name end change the
33 - FIT instructions to rMl instructions.

34 -

35 - '
36 -

37 - 1* chip number *

38 - #def in. CHIP 2

39 -

40 - /* function name for this chip, change for each '
41 - #define FUNRICAI ppTIZ2

42 -

43 -

44 -

45 - xop325()

4. -

47 -

48 - /' M for rows, eight 32 point FITs with twiddle factors ft

49 - 8UUAMUf PUMCNAMU( r325ref InData, zr325ref out-Data)

Page:
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51 -

52 - * met up two RA *actions, swepped by SI *

53 - [RT --145, -XOR ;
54 -eS- I *met pointers to input and output, oompensate for increment

56 - /* note: depending oan parameter order to get InData into $A '1
57 - IRaOut-Data - [$B, SA];

58 - BURR SB, #2;
59 -

60 - I' initialits loop count A/

61- LDR 7 -> SC;

62-

63 s tart up PVT with first RAM bank '1
64 - ,_C(32) $A -; SCl;
65 - * :uincrease initial twiddle factor in RBA by O ram per chip ,1

66 - V2_Cs:(32) $Cl, SRC4,(CIP*I*16):0;

67 -

68 - /s loop 7 times, XR with SIC alternates PAM "/
69 - _C:(32) $A*-64 -> SCO;

70 - I' use MA, increasing it for each met of 32 */

71 - /* increment of 16 puts it at I on last pas "s

72 - F71C:(32) $CO, $14ON-16:0;

73 - T.C:(32) $Cl -> $B+-2:(32,1)~;

74 - TLC:[IR,DL] [ILZI, #3;

75 -

76 - /* sav. last RAN bank */

77 - 8TCsC32) SCI -> $B÷'2:(32,1)-;

78 -

79- )
30 - 01
so - )

Paget 2

I



Data: 7/20/92 Fila; 2l:17LI3.Aa4

1-

2 - /* Rutine to aCMpute a lA complex m using four VBi chips.
3-

4 - Operation require. two phases of operation, one to calculate column

5 - "iTo, the other to oalculate raw ViTs with twiddle factors. The

6 - aoluaW phase can be perfor-md by calling the F1T32LOL routine just

7 - as for a 32x32 2D FiT. The routine for the row phase differs between
a chips becuame the twiddle factors required are different. This
9 - program can generate all four routines by running it with different

10 - settings for the macro CHIP.

11-

12 - Using multiple VIP chips requires synchmonization between phase. so
13 - that data can be exchanged. Tids can be provided by a VSP routine
14 - that synchronizes between calling FFT32COL and FFTlKn, or the 68020

15 - can invoke the first phase and wait for it to finish before invoking

16 - the second.

17-

Is - lach chip should be pse"d an input pointer to row (CHIP * 8) with
19 - CXP equalling 0, 1, 2, or 3, depending on the ohip. The output
20 - pointer should be to column (CHIP * 0) sino the results mast be
21 - transposed to convert column and row bit-reverlsal into an overall

22 - bit-rwversal. Bach chip handles the 8 rows (turning Into Columna)
23 - starting at that point. Adding a parameter to give the number of
24 - rows or Column to do would llow the sam routine to be used by 1

25 - or 2 chips without needing to mkas multiple calls.

26-

27 - The par•m•ter In-Data points to the input vector. The output vector

28 - is placed at OutData. The operation cannot be performed in place
29 - because of the needed transpose. The column pass can be perfozrmd
30 - in place to avoid needing a buffer area for the intermediate results.

31 -

32 - To get an inverse FiT, just change the subroutine name and change the

33 - YPT Instructions to IM instructions.

34 -

35 - a,

36 -

37 - /* chip number */

30 - #define CHIP 3

39 -

40 - /* function name for this chip, change for each *I
41 - d8efine FWNuA)U WT1TK3

42 -

43 -

44 -

45 - zsp325()
46 - I
47- /0

46 - /' lPT for ro ei, eight 32 point FM with twiddle factors /

49 - • uMXMM VWSOWU(zr325ref InData, 1r325ref Out Dats)

50- 4
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52: - met Up two RAN sections. swapped by SLC/
53 - anr -INKS, -X );

54 -

55 - / s et pointer to input and output, Copl•ete for incrammt */

56 - i/ notes delmnding an parameter order to get In_Data into $a /

57 - LOR OutData -, I$%, $All

56 - BUBR $B, 12;
t59 -

60 - /" initialize loop count /

61 - WR #7 -> $LC;

S62-

63 - s' -tart up PFT with first RAN bank '/

64 - _Cx(32} $A -> $Cl;

65 - / i incroeae initial twiddle factor in RBA by 8 row. par chip '/

66 FiT C:(32) $Cl, $1-(CHTP*8'16):O;

67-

6G - io loop 7 tiamm, XDR with SLC alternates R /

63 - WD_C:(32) $A+-64 -> $CO;

70 - /F IB A, Increasing it for each met of 32 *I

71 - I ncremennt of 16 puts it at I on last pass */

-I 72- mFca(32) $CO, S-ra4+-SO0

73 - NTC:(32) SCI -2 SB*-2:(32,l)';

74 - LOMs[CZDL] [ILZ], #3;

75 -

76 - /* save last MN bank '/

77 - BT_Ct132) $CS -> SB-2:(32,1)'1
76 -

7,- )
70- - / ag 

-2
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1 - /* Program to compute Bx8 2D complex FFT using one VSP chip.

2-

3 - The parametar In_Data points to the input vector. The output vet

4 - 1i placed at Out-Data. The operation can be performed in place if

5 - desired. Both input and output vectors are in normal order.

6-

7 - To get an inverse F"T, just change the subroutine name and change the

a - FIT Instructions to IFF instructions.

9-

10 - To use real data, change LDC to LD(R,0).

11-

12 - Night be able to aqueeze a little more speed out by starting with

13 - two RAN sections, load first, in first rows, load second, FT secoand

14 - row, siltch to wne A asection, FFT coluans, store.

15 -

16 - */

17-

1I - zaP325()

19- 4
20- /0

21 - W3MITfl FFT20(zr32Srsf In Data, ar325ref OutData)

22- (

23 - / met up one RAN section /

24 - BET ( -XI)4, -IDR ];

25 -

26 - / l oad all 64 entries, with rws bit reversed /

27 - LD C:(64) 0Zn;Data:(8,8) - $0;

28 -

29 - Fin the rows, result In normal order 01

30 - FFTJCs(9,i)s[FPBsl,LiSt4] $0-, 5S-0O512g

31 -

32 - / T the columns, result In bit rveroee order 0/

33 - FIT z c(64):(FFSt32,LP8:8] S0o

34-

35 - /' store result, bit revereing columns into normal order '1

36 - UTC:(64) 50 - *Out_Data:(e',6);

37- )

38- - /

39 -)
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1 - R' toutines to omrpute 16x16 2D complain FIP using tour VBP chips.

* 2-
S3 - Operation requires two phases of operation, one to calculate row

4 - FTm, the other to calculate column FrTs. Using multiple VSP chips

5 - requires synchronization between phases so that data can be exchanged.

6 - These routines do not include the sychronization. The routines for

7 - each phase can be called from another routine which provides it between

a - calls, or the 60020 can invoke the first phase and wait for it to

9 - finish before invoking the second.

10 -

11 - Bach VBP chip could calculate its four rows or columns in one instruction,

12 - but using two RAN sections allows more concurrency. Bach chip should

13 - be passed data pointers to row or column (CHIP * 4) with CHIP equalling

14 - 0, 1, 2, or 3, depending on the chip.

15 -

16 - The parameter In-Data points to the input vector. The output vector

17 - is plaeod at Out Data. The operation can be performed in place If

1t - desired. Both Input end output vectors are In normal order.

19 -

20 - To got an Inverse YFT, just change the subroutine name and change the

21 - M instructions to IFIT Instructions.

22 -

23 - To use real data, either met the imaginary perts to zero to get a complex

24 - vector, or change IDC to WC_(R,O) to use a real vector. With a real

25 - vector, this operation cannot be performed in place, since the output

26 - data would overwrite unread input data.

27 -

28 - 0/

29 -

30 - zsp325()

31 - {
32- /-

33 - /' FTP for rom, four 16 point FFTs on sequential data */

34 - SUI•7RiOTI PFTl6MW(zr325ref InbData, zr325ref OutData)

35 - i
36 - / n set up two RN sections, no need for mhange /

37 - IJUT I -I4, -*Xt ]u

38 -

39 - No set up pointers for later offset, Sh gets In_Data */

40 - LDR OutData -3 (53, SA];

41-

42 - / 1 led two roms Into section 0 A/

43 - LDC(32) $A -> SCO;

44-

45 - a' FTP as two 16 element FrTs /

46 - F1._C1(16,2)[iFPStSILPS1j $CO;

47 -

48 - I* icad remainder of entriea into section I '/

49 - LDCS(32) $A.64 -3 $C1I

50o-

P ages
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51 - /* 7 nFFT two 16 element 77. ,/

52 - FFT7C:(16,2):I[F7:8,LPS:1J $Cl;

53-

54 - s* store first result, row bit-reversed */

55 - &T_C(32) SCO -> $3:(16,16-);

56-

57 - / store second result, row bit-reversed /

58 - BTC(32) SCI -2 $3+64:(16,16")l

59-

60-

61-

62 - /' 77? for columns, four 16 point FITs on Interleaved data /

63 - SUBROINE FIT16COL(zr325ref Inb-ata, zr325rof Out Data)

64- (

65 - / set up two RAN sections, no need for e*change A/

66 - SET I -NK48, -IXOR 1;

67 -

68 - /* set up pointers for later offset, SA gets InData /

69 - TR Out Data -> [$8, $A]

70 -

71 - /* load two columns Interleaved into section 0 */

72 - TWC,(32) $A:(16,2) -; SCO;

73 -

74 - / F first set am two 16 element */

75 - Frrý_Cs(32)s(F1s%16,LPS:2j SCO0

78 -

77 - / load remander of entrie into section 3 /

78 - LDC:(32) $A+4:(16,2) -> $Cl;

79 -

80 - / 7 as two 16 element FFT

81 - FFC:(32):[FPS:16,LP:2) $C1;

82 -

83 - s* store first result, olu• n bit-revrsed /

84 - SC:(32) SCO -> $BS(160,2);

85 -

86 - / s store second result, columns bit-reversed *

87 - STC:(32) SC1 -> $B+4:(16",2);

88 -

89- )
90-

91 - )
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1-

2 - R' outines to Compute 32x32 2D complex FIT using four VBP chips.

3-

4 - Operation requires two phases of operation, one to calculate raw

5 "FIs, the other to calculate colum FM•. Using multiple VSP chips$ 6 - requires synchronization between phase. so that data can be exchanged.

7 - These routines do not include the sychronization. The routines for

6 - each phase can be called from another routine which provides it between

9 - calls, or the 68020 can invoke the first phase and wait for it to

10 - finish before invoking the second.

11-

12 - Bach chip should be passed pointers to rom or oalmn (cSrP * 8) with

13 - CIP equalling 0, 1, 2, or 3, depending on the Chip. It will handle

14 - the 8 rows or aolumns starting at that point. Adding a parater to

15 - give the number oa roms or columns to do would llw the seme routine

16 - to be used by 1 or 2 chips without needing to mke multiple calls.

17 -

18 - The parameter InData points to the input vector. The output vector

19 - is placed at OutData. The operation can be performed in place if

20 - desired. Both input and output vectors are in normal order.

21 -

22 - To get an inverse MIT, just change the subroutine ames and change the

23 - FFT instructions to 1FF? instructions.

24-

25 - TO use real data, either set the imaginary parts to zero to get a Complex

26 - vector, or change IDC to I)_(R,0) to use a real vector. With a real

27 - vector, this operation cannot be performed in place, Since the output

28 - data would overwrite unread input data.

29 -

30 - •

31 -

32 -

33 - ssp325()

34- (

35- le
36 - /* FiT for rows, eight 32 point FiTs on sequential data 'I

37 - EUDYIPTfIN FFT32ROW(zr325rsE InDate, zr325ref Out Data)

38- {

39 -

40 - &* set up two RAN sections, swapped by SLC *1

41 - SET I -134S8 *, R J;

42 -

43 - I' set pointers to input and output, compensate for increment

44 - I' note: depending an parmter order to get In-Data into $Atl

45 - R a D.ta -) [$B, SA];

46 - 3133 $3, *64;

4 -/ initialise loop count a/

49 - LDR 17 - SLC;

50 -

f Paget



Daot: 7/20/92 
Pilot B:L•t2D32.k0M

51 - i s etart up FYT with firet RAN bank •/

52 - W.C$(32) $•-3, $C ;

53 - FYI_C:(32) $C1;

54-

55 - / loop 7 timee, XOR ivth $LC alternatas PAN I

56 - LDC(32) $A+-64 -> SC0;

57 - FiT_C:(32) $CO;

5s - STC:(32) SC1 -> $B+-64:(1,32-);

59- LOOP:[UX,DL] (ILZ], #3;

60-

61 /* save last RAN4 bank */

62 - BTC:(32) $Cl -> $B+-64:(1,32-);

63-

64-

65 -

66 - / FFT for oolumns, eight 32 point FMWe on interleaved data /

67 - SUBROUTINE FFT32COL(Ir325rof InData, zr325rof Out-Data)

68- (

69 - s et up two RAM mectflon, mapped by $LC /

70 - BST [ -I* S, -XOR );

71 -

72 - m' met pointe•l to data, ompenmate for first increment '

73 - /* notes depending an parameter order to get In Data into $A */

74 - LDR OutData -> 131, $A);

75 - MW $2, #2;

76 -

77 - I' initialize loop count *

78 - LDR #7 -> LC;

79 -

80 - / s etart up FFT with first BAN bank */

81 - LDC:(32) SA:(32,l) -> $Cl;

62 - FiT C:(32) $Cl7

83 -

84 - / loop 7 tUame, XDR with $3W alternates AN /

85 - LDCx(32) $A..2z(32,1) -: $CO;

06 - lPT Cs(32) $C0;

87 - 82t_Ct(32) SCI -> $]J÷-2t(32,1)1,

so - ZOMs(IR,DL] (IL-), #3;

890

90- /* mave last RAN bark*

91 - 8 C:(32) 8Cl -> $2#-2:(32,1)-;

92 -

93- )

949- 9/

595-)
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1 - /a Coda to notify 68020 of tank completion. This code is never actually

2 - called from anywhere. Instead, Its address Is used an the return
3 - address in the call frame that the 68020 mite up when invoking another

4 - routine. When the routine completes and returns, it will execute this
5 - code. This method allows all routine. to be called without having
6 - them terminata the task until final completion.

7 - */

0-

19 - /* status bit value to indicate finished 'I

10 - #define FINISHED 2

11 -

12 - zsp325()

13 -

14-

15 - SUROUTIN FIUIH( )

16- 1

17 - /' get value for status bits */

18 - LDR VFIXNSI D -. SX;

19-

20 - /s ne ure all operations are complete */
21 am•i: EAB, CU, ZU,14J ;

22-
23 

write o global status latch /

24 -TR $X -> OX40000;
25 -

lo, 26 - halt /

27 - HeT;
28- )
28 -

3 )
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1 - /* Routine to find peak values in a real matrix. By varying parameters, it

2 - can produce a vector of the max value In each raw or column or the max

3 - value in the entire matrix. The calculation can be divided between

4 - multiple VBP chips by giving each one a contiguous subset of the problem.

5 - The maximum amplitude of a complex matrix can be found by first computing

6 - the power (magnitude squared) and finding the maximum of that. If the

7 - magnitude itself in required, it in probably still feate-_ find the

8 - peaks first and than compute th.3 magnitude for only those points rather

9 - than computing all the magnitudes and finding the peaks..

10 -

11 - The routine has a large number of paremetars to allow it to be uaed in a

12 - flexible manner. The parameter Number gives the number of separate

13 - vectors (rows or column.) to find the maximum for. The parameter Length

14 - give, the length of each vector (row or column). Length must be no more

15 - than 1024 for this routine, though a slight modification would allow up

16 - to 641. The input parameter Spacing gives the distance between starting

17 - elements of consecutive vectors. The input parameter Interleave gives

is - the distance between consecutive elements within a vector. Due to mome

19 - constraints on the $MOB I 14S registar, bit 24 must also be seat in the

20 - parameter. such a machine word can only be created at assembly time.

21 - It can be created directly by uaing a parameter ARG(valuu) with the

22 - macro definition

23 -

24 - *defins 810(X) (0x1000000 : X))

25 -

26 - or by using a parameter that point, to such a value created at assembly

27 - time. As a slight compenaation, a value other than 1 can be placed in

28 - the field from bit 24 to 30. This value will be used mas the SMRS value

29 - while the rest of the Interleave value i. uaed a. $Has8. This allows

30 - for each vector to be addressed more generally. If the 5148)48 register

31 - already contains an appropriate value, it can be passed. The parameter

32 - In_Data Point* to the start of the first input vector. The output will

33 - be Placed at Out Data. The Output will consist of a vector of length

34 - Number of pairs of maximum values and the index between 0 and Length of

35 - where that value appeared.

36 -

37 -

36 - To find the maximum row values for a ROtxCOL matrix using N VSP chips

39 - PUXK2D(COL/N, RO, ROW, ARG(1), £(CIn+CBIP*F0W*O)/N), Si(Out.CHIP*2*C0L/N))

40 -

41 - To find the maximum column values for a NOW=C matrix using N VSP chip.

42 - PEKAI2(ROW/N, CDL, 1, AR0(iOW), G(In+CHIP*RDM/N), G(0ut+CZIP-2-COL/N))

43 -

44 - assuming that HD end COL are evenly divisible by N. Using more than

45 - one chip on each local bus will probably not improve performance because

46 - the operation is bus-bandwidth bound. When using two chip., CHIP should

47 - be set to 0 or 1 in the above formulas.

46

49 - To find the overall maximum, treat as one long row using 1 VSP chip

50 - PZAKZD(1, WW*COL, any value, 1110(1), &In, &Out)
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51 -

52 - To find minimu. values, just ahange the PAX inatruction to miM.
53 -

54 -

55 - Notes It is technically possible to accalish the metting of the upper

56 - bits of SNUB NaB at execution tim, with mufficient ingenuity. It requires

57 - using (slow) floating point operations to manipulate the higher bits. A

58 - lookup table is another possibility.

59-

60 -

61-

62 - msp325()

63 - 4

64 - /#

65 - MUUMTNE PZAK2D( zr325int Number,

66 - ar325int Length,

67 - zr325int Spacing,

68 - sr32Sval Interleeve,

69 - zr32Sref In.Data,

70 - zr32Sref OutData)

71- (

72 -

73 - /t set up autamatic save to $&AR /

74 - S=T -• J;

75 -

76 - /* set up parametars in correct registers

77 - note: L.Rs depend on parameter order to put InData into

78 - SA, Interleave into $SMS_NU l and Number into S$W.

79- -/

80 - LDR Out-Data -> [SaMR, SA, $16HaS)_;]

el - LR Length -> [$PR, $LC];

62 -

83 -

84 - /* loop Number tima, handling Length each time, addremsing properly 0/

85 - MAX.)k_(SMSWT,$RSPAT) $A:CSNsB,SMBS) $M SOM;

86 - ADDI $A, Spacingj

87 - LOOfIRIZ,DL] ,LZ), 12;

688-

e9- )
90 - 9/

91-

92 - )
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I - /* Routine to perform polar to rectangular conversion on a complex vector.

2 - Us". separate sins and coaine tables. Could use. One table for both,
3 - but that would require extra tims. Only operates an angles in the first
4 - quadrant since those are the only onew produced by the rectangular to
5 - polar convesrion. The table size vill determine the acoureny of the
6 - onaversion. The error will be lees than loot * pi / (4 *table size).

7 -
a - The vector length to peased in the parameter Length. The perameter
9 - In-Pata points to the satrt of the vector to be converted. The result

10 - is placed at Out-Data. This algorithm can be performed in place if

11 - dessired.

12 -

13 - This routine urnm eoftware pipelining to maximize throughput. This
14 - should cauee the hue to he buay most of the time. if two chips are
15 - performing this at the name time, there will not be enough bandwidth.
16 - 10enchmarking will need to he ueed to determine whether this is faster
17 - than a version which does not attempt pipellning but uaeas larger blockes.

28 -

19 - Note: changing JMPC instructions to usse IS qualifier caussee incorrect
20 - results. It worka correctly for other routines. Rot using IN clove
21 - this routine down. Hoving the software pipeline loop kernel no that
22 - the JHWC doesn't block a subsequent instruction that could he executed
23 - concurrently with the previous one would regain moat of the speed.
24 -

25 -

26 -

27 - 1' need trig functions for tables ~
28 - Sinlclude emsth.h>

29 -

30 - /* sitee of mine and cosine tablees5

31 - tdefine TAB SIZE 128

32 -

33 - /* size of increment between table entries '
34 - #define NKcRNW (aain(1.03/(T&RB~SIZ-i))

35 -

36 - /* aseembly generation function A/

37 - zap325()

30 - (

39 - mnt index;

40 -

41 - P ubnerate trig function tables.

42- /

43 - Bin~ehzs

44 - 0/

45 - for (index -0; index < TAS SIZE; index.+)

46 -

47 - /#
40 - DAT2A f (I VB-loat(ein(inidex'INURBKT))) )

49 -

50 -
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51- /9
N 52 - Oonab:t

53 - /
54 - (ar (index - 0; index < TM8aIz; index+*)

55- {

56- /9
57 - . I { (IMR-Float(oos(index*INCU T))) ;
56 - 9/

59- )
60-

61- /9
62 - 8URROUTINI4 POL2RBCT(zr325int Length, zr325ref In Data, zr325rof Out Data)

63- (

64 -

65 - /0 use both PM banks to optimime throughput a/
66 - / M Nots: chosen interleaving pattern asunie IUT instruction
67 - Oak" no use of IU since it is a data movemant instructial.
6G - Also assumen that arithmetic operations that umn external
69 - operande can't be overlapped with aove Instructions, though
70 - this isn't clear.
71 - Benchmark might be needed to check the interleaving pattern.
72- */

73 -

74 - / " set up two RAN sections, swapped by $LC, round to neareet '/

75 - SIT M -INKS, -XDR, -ROU)•D ;

76 -
77 - /0 load pointer@ to data, shifting $A to angle, companste pre-inc /

76 - IBVTR In_DDat -a SA;

79 - L)R Out-Date -> $i;
O0 - BUSR SBi, #64;

at -

62 - /a initialise loop oount to number of 32s, skip loop if none */

63 - iNaMWis (Biirr-5 Length -i $Lc;
84 - 3NPC (U), DO Rmst;

85 -

86 - / tart up converssion with first RAu bank 0/

97 - /0 load angle into imaginary part 0/

as - II:(32) $A:(2,1) -> $10;
69 - / m lultiply by factor to get table offset 2/

90 - MUILT(R,R):(32) $CO, d(f•lEFloat(1.0/IRcRZ43T)) -- SZ0;
91 - / oonvert to Integer to get Integer part right justified 0/

92 - rPIIITR:(32) $I0 -> $10;

93 -

24 - / i if no more to do, skip rest of loop */

95 - 3nsV:I(.L] [LI], Do Store;

96 -

97 - /6 loop with software pipellning "/

98 - Loops:
9g - / lOad and start next vector 0/

100 - I)1:(32) $A÷-64:(2,1) -> $10;
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101 - WJLa_(a,R)s(32) $CO, #(IZEBFIoat(l.0/lNCR3MG )) -a- S'1O

102 - d' do bus operation for previous during execution of current 'I

103 - LUTJs(32) Cos•ab, $11 -> SRl;

104 - / do next operation on Current vector /

105 - YPINT f9:(32) $10 - $10;

106 - / finish and storm previous vector

107 - LAna i(32) BinTab, $11 -D $It;

108 - / assume external operand fetch monopolizes bum unit */

109 - nUTL(R,R):(32) SCi, $A-65:(2,l) -> SCI;

110 - BMTCs(32) $Cl -> SB+-64;

111 - / decrmnt count (svitches banks) and loop immdiately if not done

112 - J)PC:IDL] JlIM], Loop;

113 -

114 - Do Store::

115 - /' finish up last 392 bank A/

116 - /' look up cosmna of angle in table '1

117 - LUT Us(32) Coalab, 511 -3 SRa

118 - / look up mine of angle In table */

119 - LUTs(32) BinTab, $11 -> $111

120 - /a multiply Coene and mine by magnitude to get real and Imaginary */
121 - W=T._(.tR,R)s(32) SCI, $A-1:(21) -> SCI;

122 - ' store resulting complex number in rectangular coordinates 0/

123 - 6T.C:(32) SCI -> $28.-64;

124 -

125 - DoRAets:t

126 - I handle any remainder left after blocks of 32 /

127 -

128 - / shift remainder into $S1PT, use [TC] to zero high bit (32a) 'I

129 - MnLBETR: [SHIFT-18,J] Length -> SPR;

130 - JNPC (ZR), End;

131 -

132 - / finish rmasinder */

133 - /' load angle Into Imaginary part 3/

134 - WIP- (SiAT) SA+-641(2,l) -3 S10;

135 - m' multiply by factor to get table offset /

136 - fM.j..R,R)s(SQw$ ) $CO, *(j_Float(1.0/IzcinMGW)) -: SiO;

137 - /* Convert to Integer to got Integer part right justifiad /

130 - IPIWTR:($N5MT) SC0 -> $10;

139 - /' look up cosine of angle in table /

140 - LUTR:(SiN~P) CoNTab, $10 -> $S0;

141 - / look up sine of angle in table */

142 - LUTR:(S(4p) Sinab, $10 -> $10;

143 - /* multiply cosine and mine by magnitude to got real and imaginary a/

144 - LJCU(R,R):($UwpT) $CO, $A-l:(2,1) -2 $00;

145 - /* sto0r• remlting comple number In rectangular coordinatea */

146 - Rit C8($MI4T) CC -), $B+-64;

147 -

146 - Rndst

149 -

150-
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1.51 -
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I - /* 31utine to perform polar to rectangular convarsion On a comlex vector.
2 - Use separate amin and coeine tables. Could urn. one table for both, but
3 - that would require extra time. Only operates; on angle. in the first
4 - quadrant mince thorn. are the only owne produced by the rectangular to
5 - polar conversion. Other angles will produce unexpected reaults. The
6 - table size will determine the accuracy of the converamio. The error
7 - will be less than 100% * pi / (4 * table stize).

6 -

9 - length of the vector to be convertad is passed in length. In-Data

10 - pointas to the start of the input vector. Output is placed at location
11 - OutpData. Convereion can be performed In plaea If desired.
12 -

13 - This version assuimes performance Is bounded by local bue bandwidth and
14 - therefore doesn't attm~t eoftware pipelining alternating DAM banks.
15 - Instead It uses the entire RAN at once to minimize bue traffic for
16 - instruction fetching. This aleo askee the code nore readable. Testing
17 - will be needed to mos which method Is faster. Useing half of RRN and
16 - loading magnitude in other half before NULT eight save more bandwidth.
19 - '
20 -

21 - /* need trig functions for tablea

22 - #include cmath.h>

23 -

24 - /* size of imin and couine tables 0/
25 - #def ine TRB 81ZR 128

26 -
27 - /* siz, of Increment between table entries '
28 - Ief in. ZUCDWEDIT Cen>.)(ABz-)

29 -

30 - /0 &semebly generation function '
31 - =ep325()

32 - 1

33 - itindestj

34 -

35 - /' Generate t ig function tables..0
36 - /f

37 - 8iuaeb::

36 - V

39 - for (index 0;O ir.'lax -c TABIZ; index..+)
40 -

41 - /#

42 - .'A{(IMM-loat (mis( index* INCREMM~)));

43 -

44 -
45- /

46 - Coatabas

47 - 0/

46 - for (indexc 0;O index cTAB 8!fls index..)

so -
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51 - .DT { (Il3Float(oo.(±ndex*lU34 T))));

52- 6/

53- )

54-
55 -

57 - 8URPOMMS P (L2M3(Zr325int Length, zr325rlf In.ata, r325rof OutData)
58- (

59-

60 - /* eat up one RAN auction, met roundLng to Moralit

61 - BU [ -me3, -ROUND ];

62-

63 - /* •a interl to data, compenat for pre-incrat */

64 - /* incrment $A at load so it point to angle part*/

65 - ZIT IrnkData -) k;

66 - •LD OutData -s $SB;

67 - aUit(SI, $8, #128;
68 -

69 - 1* initializa loop oount to number of 64a, skip loop if none

70 - 8aURSM s [8671'63 Langth -s SLC;

71 - JWC [L( , DoVastj

72-

73 - Loopas

74 - / load angle into Imaginary part */

75 - lPI(64) $A+-128:(2,l) -> $I;

76 - / multiply by factor to got table offset *A/

77 - MAT _(R,R):(64) SC, #(IK Fylcat(l .0/IHCI 6 )) "> $I;

78 - 1* convert to Integer to get Integer part right justified

79 - VPIW3R:(64) $I -> $1;

80 - /* look up cosine of angle in table */

61- 3R: (64) Coahab, SI -> $R;

82- look up aine of angle in table */

83 -UTR:(64) BinTab, $I -> $I;

84 - / ltiply caino and sin by magnitude to get real nd imaginary A/

65 - 14iL7(R,X) (64) SC, $k-19(2,1) 8> $C,

66 - / ator resulting complex number In rectangular sordinate /

37 - BCIr (64) SC .3 $B*-1281

d - e* demet 31, loop immediately on not zero

89 - .INFCs(DL,Xg) (ILZI, Loops
90 -

91 - DoPteet:

92 - / handle emainder left after blocks of 64 /

93 -

94 - / s eift remainder Into I3T, skip if none /

95 - .amzR (aBUT-la Langth -S $7;

96 - JHC (M], End;

97-

96 - /* finish remainder */

9 - /* load angle Into lmaginary part */
I:: 100 •_:(SN ) $A+-128:,(2,1) - I
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101 - /' multiply by factor to got table offset */
102 - WLT_(R,R):(5MwF) Sc, #(izr loat(1.01/ixcazmT)) -s Si;
103 - / c convert to integer to get integer part right juatified 0/

104 - FPI•NiRs($v3@T) $I -> SI;

105 - /' look up oosine of angle in table '/
106 - UMRI(Sli9T) CosT4b, ST -> $R;

107 - /' look up sine of angle in table /

106 - LUT'RI(S, 9T) SUinab, $1 -> 51;

109 - /* multiply coeine and sime by magnitude to get real and imaginary 0/

110 - IL.(RR):(S1IP,( T) $C, SA-l:(2,1) -D SC;

111 - I s ltore resulting complex number in rectangular coordinateA 'I
112 - ITC:(S$I•P) $C - $B+-128;

113 -

114 - End::

115 -

116-
117 - 9/

118 -
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S 1 - /* Routine to Computa magnitude squared for a complex vector. If the vector

2 - is the PIT of a signal, this is the pom.r spectrhm of the signal. This

3 - routine Is faster than the rectangular to polar conversmio and should be
4 - used ifthe magnitude squar-ed is an useful as the magnitude., ro example,

S5- the point of maximum magnitude is also the point of maximms power.

7 - 2This rtine can be performed in place, hoducing an output vector half

S - the length of the input. This would leave gaps If multiple VBP chips

9 - re being used. If the calculation is not perfor•ed in place, or gaps
10 - re acceptable, there Is no problem using multiple chips to calculate
11 - parts of the output vectors.

12-

13 - Note: this routine is I/O bound even on a single VB?. With two sharing

14 - a bus, it will be even wormse. If it is being used imediately after an

15 - PVT operation, It would be more efficient to perform the magnitude

16 - squared operation as the last step of an PIT routine before storing the

17 - result. Thi, would save a store and reload.

10 -

19 - The input parameter Length contains the number of elaments in the

20 - input vector. The parameter InData points to the start of the

21 - input vector. The output will be placed at Outo.Data.

22-

23 - 'I

24-

25 - zap325()

26 -

27- /-

28 - MEuXuIfMNS POMIB(zr325int Length, zr325ref In Data, zr325rof Out-Data)

29- (

30 -

31 - / use both RAN banks to Improve throughput '/
32 -

33 - 1 set up two AM semtions, swapped by SL *1

34 - WI - amI , -XO j3

35 -

36 - / set up pointers to data areas, compensate SB for pre-increment */

37 - N Note: Load depends on pars ter order to got In Data into Si '1

36 - LDR Out.Data -> [$D, SA)

39 - 81 SI, 332;

40 -

41 - / initialize loop count to number of 32s, skip loop if none */

42 - 38•T11: [SUIPT-5] Length -> SLC;

43 - JNc [IR], DoRest;

44 -

45 - / start up with first RAH bank *1

46 - LDWC:(32) $A -> SCO;

47 - NQOa.R:(32) SCO -> SRO;

48 -

49 - i if no more to 4o, skip root of loop *1

so - J (C:IDLI (I], Do"Store;

W age:
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51-

52 - loop with softwmar pipeline, X R, with PLC alternAtem PM '
53 - D.. CI(32) $A+-64 -• C0;

54 - M4OQR,(32) SCO -: SRO;
55 - BT R:(32) $R1 -> $B+-32;

56 - LOCs(DLr] [ILZ, 13;

57 -

58 - DOStore::

59 - /* save last RA14 bank 'I
60 - BTR:(32) SRI -> $a+-32;

61 -

62 - Do Rmst::

63 - /' handle remainder left after blocks of 32 'I
64 -

65 - /" shift rema inder Into $1HPT, use (TC] to zero high bit (32s) '/
66 - mRLM [BUZPL'T-lS,!C] Length -> SPR;

67 - JNPC EZR, 2ndi
06i-

69 - /G finimh up remainder */

70 - W._.CRO$MIW) SA+-64 - $CO;

71 - NG8QR3(SEWT) $CO S ao)

72 - S.R(I ($UWT) SR0 -> $B-32;

73-

74 - Rnd::

75 -

76- )

"77- a/
78 -

79 - )
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/1 VPE code for convolution of a real sequence of up to 64 points with

another longer real sequence, producing up to 1024 outputs. This

3 - size can be done with a single FIR instruction. This code can be

4 - called repeatedly on a mingle procemsor to handle convolutions where

more than 1024 output points are required as long am the shorter

- equence Is still less than 64 points. However, a different routine

7 - designed for a longer convolution would he more efficient. This

a - same code can be used on multiple VBP chips simultaneously to give

6 - a aconiderable speed increase. There my be no benefit to executing

10 - on more than one VBP chip per bus because the FIR instruction my not

11 - give up the bue between output points.

12 -

13 - To get a full convolution of the input requires padding both ends of

14 - the longer input sequence with a number of terms equal to the .angth

15 - of the shorter sequence minus one. This is required in order to

16 - explicitly provide the zeroes that are assumed to be multiplied by

17 - elementa of the shorter sequence that extend beyond the ends of the

1i - longer one during the convolution process. The length of the output

19 - sequence should he equal to the sun of the lengths of the (unpadded)

20 - input sequences minus one. If a circular convolution is desired

21 - instead of a linear one, the zero padding should be repl•ced with

22 - points from the other end of the input sequence.

23 -

24 - The shorter input length is passed in CoefLangth. The output length

25 - (equal to input length before padding plus coefficient length minus one)
S 26 - is passed " OutL0ngth. Coefficients points to the shorter sequence

27 - (typically FIR filter coefficients). InData points to the start

26 - of the longer sequence (possibly a zero pad). The output in placed

29 - at Out_Deta. Typical call for a four tap filter:

30 - CALL RCONV(4, 1024, scoef, &In, &Out)

31 -

32 - The convolution can be performed in place with careful choices of

33 - preasmter values. If the convolution requires multiple calls on a

34 - single VSP chip, the output must begin at the first location of the

35 - long input. This avoids overwriting inputs that will be needed for

36 - the next call. However, if multiple chipa are being used, the output

37 - mast overwrite the last input used in Its computation. This works

38 - because the VBP chip has already read the input into Internal RAN

39 - for further use. It Is necessary because that input is the first

40 - one which will not be needed by the chip working on the previous

41 - portion of the convolution. Same further care is needed in the

42 - initial startup of in-place multiple chip convolution to ensure that

S43 - a ohip does not write over any input values before the subsequent

44 - chip rads them en. A multiple call, multiple chip convolution

45 - cannot be done in plane became the constraints are contradictory.

46 - UmIaNver, much a large data set would not fit Into shared mmory.

47-

46 - Splitting up a convolution between 3KMCIPS chips would require

"49 - something like the following invocation for chip ranging f rom zoL 50 - to (1R CHIPS - 1):
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51 -

52 - CALL ROhIV(CLXNRP_,, OUT18Z1(cbhp)* &Coef,

53 - W11 + DA!A 8BTM(chip)), &(Out + DATA....WTW8(chip)));

54-

5 with the definitions
56 -

57 - #define OUTLEN (ThLEN * OZLV - 1)

58- #define An _AO ,PUT(CuHp) (((CHIP) , o(PlU) / WINUUCHIPs)
59 - #define OITlS zt(CHIP) (DA o0WraR(cBIP*1) - DMAO1Pw8(CBP))
60 -

61 - Note that since all this routine does in to load various values into
62 - internal register. and ANM and than eecute a single instruction, it
63 - might be faster for the 68020 to load the values directly and execute
64 the FIR instruction in slave mode. The sme applies to the coqlex
65 - convolution and the correlations.

66 -

67-

69 - sap325()

69 -

70- /-

71 - BURROMlN RCONV( zr325int Cosf_tLsngh,
72 - zr325int Out Length,

73 - zr325rot Coefficients,
74 - zr325ref In-Data,
75 - zr325ref Out-Data)

76- {
77 - s* met up mode properly, one RAN bank, 24 bit integers '/
76 - UT [ -1m0, -*zDR , -11M ];

79 -

80 - / ot $a6A to put output in correct place */
*1 - ,DR Out•.Data -3 $aI

82 -

63 - / t to get real coeffiaienta In sig-sag order, need to load half
84 - masny (rounded up) "opqle* aoeffsi.ients
865- 01

66 - 8 LAtH [UIEHZIM-171 CostLength -> $PRt

67 - ADDR SPR, *0x020000;
96-

89 - / load coefficients in reverse zig-zag real order '/
90 - LDR Coeftficient 0> $A;
91 - ADD& $A, CoefLtegth

92 - MUMR SA, #2;

93 - J(I,R):($NMPT) SA:(-1,1) -. SCO;

94 -

95 - / O nS et up actual lengths for 71t Inbtruction N/

97 - ADDM SP, OutjMtgth;
968-

99 - /* convolve With input sequence 0/

100- I•.Rs($MWT#, $RlXir) Szo, *InDatal
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101-

10
103

104s
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1 - /* Program to perform real correlation between two real vectors with up to

2 - 64 elements in the shorter one and up to 1024 element in the output

3 - using a single zoran processor. Due to requirements of the instruction

4 - used, the longer real vector must be padded at both ends with (shorter

5 - length - 1) real zero elements. These are needed for when the shorter

6 - vector extends beyond the end of the longer during the operation. If the
7 - vectors are the dam length, either may be considered the longer one.

8-
9 - The length of the short vector is passed in the parameter CoefLngth.

10 - The length of the desired output vector (typically equal to the sum of

11 - the lengths of the input vectors, minus one) is passed in Out.Length.

12 - Coefficients points to the short input vector. In.Data points to

13 - the first zero pad in the longer input vector. The output is placed at

14 - Out Data. The output data could be stored in the place of the first

15 - input vector If desired. Typical call to perform a full autocorrelatlon
16 - in place with a 64 (padded to 190) element vector:

17 - CALL CCORR(54, 127, &in, a(in+63), &in)
18 - The (in÷63) skips the padding at the front of the vector.

19 -

20 - Nota: if this routine will always be used for two equal length vectors,

21 - only one length parameter is needed. The other can be coeputed from It
22 - with smu extra overhead. On the other hand, if this routine will be
23 - used repeatedly for the same length, sending a prooeputed $PR value

24 - instead of a length would reduce overhana alightly.

25 -

26 -

27 - z•p325()

28 - (

29- /-

30 - SUBlAOuTlM RCORR( zr325int CoefLength,

31 - zr325int Out-Length,
32 - zr325ref Coefficients,

33 - zr325ref In-Data,

34 - zr325ref Out Data)

35 -

36 - / s set up mode properly, one RAM section, 24 bit integers /

37 - SET 1 .048, *IXOR, Il-FN 33

38 -

39 - / S at SIA to put output in correct place /
40 - LDR OutData -> SAR;

41-

42 - / to get real coefficients in zig-zag order, need to load half

43 - as many (rounded up) co loex* coefficients

44- 5/

45 - SILUTA: (rSHIPT'-17] Coef Length -> SPR;

46 - ADDR SPR, 0iOx2000O;

47 -

48 - / load coefficients in zig-zag real order */

49 - LD.C:($UMPT) *coefficienta -) SCO;

50 -
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51 - / load vector length. into parameter regisetr

52 - SNNPT - Co~ftLength, $UPKAW= - OutLengtb

53 - a

54 - ARLSmT: [SHIFT-iS] CoefjLangth -> SPR;

55 - ADOR SPR, Ouiength;

56 -

57 - / correlate vith input sequence ~
58 - 1IR R:($N)CT,$FdPRAW) $ZO, *InData;

59 - )
60 -

61 -

Page: 2
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I - /* Routine to set up reciprocal table and one to generate inline code

2 - to compute the reaiprooals for a vector. The algorithm Is to perform
3 - a table lookup to get a starting estimate and then perform Hewton-Raphson

4 - iterations until accuracy is 24 bite. This requires that

5 - TAB BITS - (1 << NII4-IUR) >- 24.

6-

7 - Night he better to split reciptab into a zop325 routine to create table

a - and link in after asesmbly. The reciprocal function would still be

9 - included by the using routine. This would prevent including table

10 - more than once if it is used by multiple other routines.

11 - '/

12-
13 - /* define numbe of bits of accuracy in table, table size, and iterations /

14 - Ndefine TAB BITS 6

15 - #define TAB_SIZ( (I < (CTA.BITS-1))

16 - #define Nif IT-r 2

17 -

1i - /* Function to create reciprocal table for initial eatimate. Muot be

19 - called once if reciprocals are to be used.

20 - */

21 - void reciptab()

22 -

?3 - long i;

24 - union

25- (

26 - float fit;

27 - long bits;

28 - ) mx, min;

29 -

30 - /* generat. label for start of table /

31- /0

32 - RecipTab::

33 - /

34 -

35 - /' generate the table entries 0/

36 - for (I - 0 1 < TUAB z; I..)

37- -
36 - /* oalculate max and min values that will use this entry m/

39 - ain.bits - (127L <c 23) * (i << (24 - TABBITS));

40 - max.bita - (127L cc 23) + ((i+.) cc (24 - ThE BITS));

41 -

42 - /* use midpoint between their reciprocals to miniLize error /

43- I#
44- .LTA ( ImFloat(O.5 / ax.flt + 0.5 / min.flt) }

45- #/

46-

47 - )

48 -

49 -

50 - /* ¥ontli. to pruduce inline assenmly to calculate the reciprocals for
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51 - a vector in internal RAN. The internal RAM just be set up to have two

52 - banks and the input vector must be in R0. This limita the input vector

53 - length to 32 or lae". The result vector ends up in R0. All internal
54 - RAN banks are overwritten with interediate results.

* 55-

56 - This function is essentially a macro. it is called fron within a
57 - zsap325() function and generates aamembly code. It does not produce

58 - any calls that execute at run tim. The function reciptab aunt also

50 - have been called by the zap325() function or there will be an error

60 - during aeambly.

61 - */

62 - void recip(int length)

63 - j

64 - int il

65 -

66 - /I

67 - /• split into exponent and mantissa, negate exponent, trap zero

68 - SPLITR:((length)):[DV] SRO -> SCl;

69 -

70 - /• look up initial estimate of reciprocal of mantissa '/
71 - IJJT R:((IOngth)):[SHIT-(24-TABBITS)) RecipTab, $11 -> $10;

72 -

73 - /' change sign of estimate to match initial input sign '/

74 - B1=-R:((lngqth)) SR0, $10 -> $R0;

75- El

76-

77 - /' generate Nwton-Raphson iterations inlins '/

78 - for (I - 0; i 4 N< JITZR; i1+)

79- (

s0- /I

e1 - I nw estimate - estimate * (2.0 - estimate * input) '/

62 - SBM.R:((length)) $10, $11, #2.0-> $10;

83 - WTVZRt((langth)) SRO, Si0 -> SR0;

a'- 61

85 -

86 -

87 - I#

as - /* recombine resulting mantissa with enponent /

89 - JOINR:((length)) SRI, SRO -> SRO;

90- 6/

91 - )
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I - /* Routine to perform rectangular to polar conversion on a lomlx vector.

2 - Uses a Cordia-like algorithm for magnitude and an arct~angent lookup

3 - table tor angle in radiana. Naximum error in magnitude io 2% for

4 - three iterations, which can esaily be reduced to a value an low am

5 - 0.0002% by increasing the number at iterationa to eight. Maximum error

6 - in angle in 2.33% of a quadrant (0.0366 radians) for 5 bits from each

7 - mantissa, which requiresa a table of 1K entriee for first quadrant angles

8 - only. The table size must be quadrupled for each doubling in precision,

9 - ma th~is approach Is not practical for high precision.

10 -

11 - Thisi program computes only first quadrant angles. other angles are

12 - movad into the first quadrant by taking the absolute value of both

13 - components. Thin means that the angle will be correct for the first

14 - quadrant, equal to pi hinus the true angle in the second quadrant,

15 - equal to the true angle minus pi in the third quadrant and equal to

16 - minus the true angle in the fourth quadrant. These angles are the

17 - absolute value. of the angle. between the complex numbers and the

18 - nearest real axis. If full angles are needed, the table can just be

19 - quadrupled to handle sign bits in the index.

20 -

21 - The vector length is passed in the parameter Langth. The parameter

22 - In-Data points to the vector to be converted. The output is placed

23 - at Out-Data. The conversion can be performed in place if desired.

24 -

25 -

26 -

27 - /* need arctangent function for table 0

.28 - *include <m~th.h)-

29 -

30 - /a number af bits from each mantissa to he used in arotangent table lockup 0/

31 - *d0fine Th*BITB 5

32 -

33 - /* number of Cordin Iterations for magnitude calculations '

34 - #def ine HMGlITEU 3

35 -

36 - /6 function to return arctangent table value for index number '
37 - /* Only handles first quadrant angles, but could he moditied for all tour I/

36 - float tabentry(int i)

39 - 1

40 - int fbits[21;

41 - int part;

42 - int index;

43 -

44 - /0 determine numbers that would have produced the given Index 0/

45 - for (part - 0; part <- 1; part++)

46 - 4

47 - P extract Interleaved mantises bits from index 0

46 - fbits(psrt) 0;

49 - for (index *0; index < TAB SITS; index+*)
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51 - fbital[part] I- (1 << inde) A i >> index + part);

52 -

53-
54-

55 - I' return middle angle of the possible range */

56 - return (ataz2((double) fbits[0] + 1, (double) fbita[1]) +

57 - atan2((double) fbits[0), (double) fbits[l] + 1)) / 2.0;

5o - )
59 -

60 -

61 - /* actual assembly generation function */

62 - =p325()

63 - 1

64 - int Index;

65 -

66 - /' Generate arctangent table. Because of normalization, only first

67 - entry and last three quarters of table are actually used.
6Es- */

69- Ie

70 - AtanTabst

71 - Vl

72 - for (Index - 0; Index 4 (1 cc TAkDAVTB2); Index+#)

73- {

74- /8

75 - .DATA 4 (IEEEFKoat(tabentry(indsx))));

-, 76- 8l
77-

78 -

79 - /I

80 - 8UBROUTINE REPT2POL(zr325int Length, zr325ref In Data, zr325ref Out Data)
81- (

82-

83 - I' set up two RN sections, swapplng on each loop iteration /

04 - jE ( -1318, -R ];

85 -

86 - l* load data pointers, parameter order gets InData into SA */

87 - WR OutData -> ($1, SA);
a8 -

89 - /* initialize loop count to number of 32., skip loop if none */
90 - SHRBINRsz lP,,T-5) Length -> SLC;

91 - JNIC (Ni), DoRet;

92 -

93 - i' first part of loop to fill software pipaline a/

94 -

95 - /* load to bank 1, take abeolute value to put in first quadrant '1

9% - LDj11C(32) $A -;- Sl;

97 - /' align santimna 1 and interleave to create atan Index in $SI */

96 - ALIGU:(32) $Rl, $11 -> $10;

99 - I' do cordic iterationa to get magnitude in SRI, takee a while 'I
100 - WAQ:(32,MaITI) SC1;

Paget 2



Date: 7/20/92 File: B:R1WT2POL.&AM

101 - /= look up arc-angent in table, overlaps with MAW '/

102 - / r etra +1 ia because of the sign bits technically included /

103 - LUT:(32):[SIPFT-(23 - 2*(TABBITS+1))] Ataniab, $10 -> $10;

104 - I store angle, overlaps with WAO 0/

105 - BT I:(32) $10 -3 $B+'1:(2,1);

106 -

107 - /' decrement SLC, end loop if done a/

1o0 - ,)UC:[,DL] -LZ], Dotore;

109 -

110 - / s eoftware pipelined loop, allows next load to overlap M /

111 - Loop:I

112 - LD j:(32) SA*-64 -> SC1;

113 - /a store magnitude from previous vector /

114 - 8TR:(32) $S0 -> $B-1:(2,1);

115 - ALIGN:(32) SRI, $I1 -> ST0;

116 - IAM: (32,M4AITER) SCI;

117 - LUT:(32):(8BIFT!(23 - 2*(TABEBITS+1))] Ata~ab, $10 "> $10;

118 - T_1:(32) $10 -> $BS-64:(2,i);

119 - /a decrement counter and branch to top if not done '/

120 - JNPC:DL ([ILZI], Loop;

121 -

122 - Dojtoares:

123 - / r rest of loop to empty software pipeline ./

124 - store magnitude from last vector '/

125 - ST R:(32) SR0 -> $B-1:(2,1);

S126 -

127 - Doe_Rets I

126 - /* handle remainder left after blocks of 32 '/

129 -

130 - /' shift remainder into SHMPT, use ITC] to zero high bit S/

131 - fEilETR. SHIMrr-1,TC] Length -2 $FPR

132 - JMPC (ZR], Rnd;

133 -

134 - / need AI0 I•R in S$MPZM! to use SPR with PAC */

135 - ADDR $PR, #MWAGITZR;

136 -

137 - /* finish up remainder 'I

138 - l)_:::(SNPT) SAt-64 - SCl;

139 - ALIUiI($S64Pi) $S1, $11 -> $10;

140 - NAf: ($1 .SRIPZAT) Sc1;

141 - LUT:(SDIPT):([HIPT-(23 - 2*(TAB ITS+i))] AtanTab, $10 -$ $10;

142 - 8T 1:($SDWT) $10 -> SB-64:(2,1);

143 - BTzR:($IE1'T) SR1 -> $B-1:(2,1);

144 -

145 - mad:s

146 -

147 -

146 - V

149- )

Pages: 3



Dates 7/20/92 
pilot BIRSIMT.Am

1 - /* Test program to -e if Zorena work

3 - /* absoluto bass addressee from memo ry p m /

4 - deftine PRRM Ox0000

5 - #def ine FOURý POT Ox20000

6 - #definea BTATUWLAT 0x40000

7-

a - #includa "rocip.asau"
9-

10 - "p325()

11- (

12- int i;

13 - flat x;

14 -

15 - /' set up reciprocal starting table /

16 - reciptabo;

17 -

19 - /#

19 - .On 0

20 - IURROUTIM NAIM()

21 - j

22 - / met up two RAN snctions

23 - BRT [-tN1MB, -IXDR];

24 - LDR:(16) FOUR POK -> $RO;

25 - #/

26 - recip(16);

27 - /#

28 - BTR:(16) $RO -> FOUR-ORT;

29 -

30 - /

31 - I

P

S~Page:
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Dat~es 7/20/92 File: B:SUCK.AM

I - /* Initialization for synthetic stack framses for IF 1DIG.

2 - rutAakm and cataakM are starting 381 value, for chip N.

3 - One free spot left In stacks for interrupt.
4 -'

6 - P abfolute bass addressees fro memory -ap

7 - Mat in. PRiN OzOOOOO

0 - #def in. FOUR POMT 0x20000

9 - OMet in. 8TMTU8 LATCH Ox40000

10 -

11 - #define OOLWU(N) (FaJR)OE! + (N) * 2)

12 - #define Wf(N) CFOUIR-PI + (N) - 32)

13 -

1' - *ep3 2 5 ()

15 - j

16-

17-

19 - SURP40fTIU FINIBHOI

19 - 8UUIWUnZNZ mF16= (zr325ref In-Data, zr325ref Out_.Dtat)I

20 - SUIFAITINN YP116MWC r32 bref InkData, zr325rof Out~pata)

21 -

22 - .EMM _Aub~atryYINhIM

23 - .VMM U ubxntryMl6CoL

24 - MO~WN _8bRntry.FFTl6D~w

25 -

26 -

27 - BAK~

286- DT

29 - catackO:t

30 - -DATA 0)

31 - .DMAP &_Bub~ntryFr~l6ML )

32 - .DATA. ( OBubntryYINIMBI

33 - .DATAk 4OLWU(O) )

34 - .DAMA OULWUM(0)

35 - natacklss

36 - .DATA 0 )1

37 - .DM~ (A.SubantryM16COL
30 - .DATA { S~ubantzy-PINION )

39 - _DMW ODLWU(4) )

40 - -DATA 4OLUM(4) )

41 - astaak2s:

42 - _M

43 - .DATA 4 SBubntry_ M 1600L

44 - -D8ATA 58Bub~ztryjFIxI8U

45 - .DM~ OLWU (a)
46 - .DOM CMA*(S()

47 - aatack3ei

49 -DMP 4 £Bu~fltryM16CL )

50 - DX .A A 4SUhm~trY_?wINI 1;

Page:



Date$ 7/20/92 Files Rzam=.Aam

51 - -DATA { OLUMN(12) )
52 - D~A { OLU3UC12) )

53-retackozz

54 - DAA 0)

55 - -DATA 4A._SubintryM2r6Yvw

56 - .DATA& 4£aubZ:%tryjzE!SU
57 - DAT WW(0) )

59 -tataklass

60 - .DA!AkO0

61 - -DATA 4 IBub~ntryFT16RDW

62 - .DAWA 4 sGuh~rtryjjXNI8 )I

63 - .DATA 4 W(4) }

64 - .DATA 4 W(4) )
55 - ratack2::

66 - .DMATA 0

67 - .DATA& 4 SubztryF7Z16WV 1;

6- D&A! 4 SBubEatryFINI8j )

69 _ I.DhAh4 WW(8) )

70 - .DATA 4 W(S)

71 - rataa~jz:

72 - VfATA )1

73 - .DA!A 4 S_5ubzntry3Fr16~ )
74 - -DATA 4 LSub~zntryflNxflB )

75 - .DATA 4 OW(12) )
76 - .DATA 4 OV(12) )

77 - 0

78 -)

Pages 2



Vile: BstffAWK2AI
Daete 7/20/92

1 - /6 Initializationi for synthetic stack freame for FMTD32

2 - retaakp and aataokN are starting SAP values for chip H-

3 - MOe free spot loft in Itacks for interruapt.

4 -0

6 - /0 ebelute base addresses frc= emory map '

7 - #define PHAN OxOOCOC

8 - #def ine 7PUR.POR 0x2000

9 - #def ine BZAMWLATCH Dx40
0 0 0

10 -

11 - #define COLUM(O) (V0URPOR * (M) * 2)

12 - #define NOW(N) (1OtUR.PCT + (N) a64)

13 -

14 - zap325()

15 - (

16 - /#

17 -

18 - BUUBJFAlNE FINISH();

19 - BUMOUTIMN M32WL(zr325rof 11kDats, zz325rof Out-Data);

20 - SUBROMMEN FTZ32ROW(zr325ref In-Data, zr325rof OutData);

21 -

22 - .EUIMN -BubgntryFIRIBB

23 - NXTK3N _ub~ntry..yTT32CaL

24 - AVERN _0-bRntryFFT32HCW

25 -

26 -

27 - 82&cS::

28 - .DMA 0

29 - aatakots

30 - .DATA 0

31 - .DAMR &_A ub~ntry_?FT3200L )

32 - .DM2 ( _DBWntry_?YI~lSB)

33 - -DATA ( WUIIM0 )I
34 - .0M2 CO~LWUMN ()

35 - catackla:

36 - .D%TA 0)

37 - .DA2h 4 a..ubntryFFT32CL y;

30 - .DMATA &_SUbntryjINIDU )

39 - .D"AA 0LL53U(e)

40 - .DM2 COLUM(S)

41 - catack2;z

42 - L 0

43 - .DATA 4 aBubgntryFVI32CDL

44 - .02 DA G.BUbintryVXUINIS 1;

45 - -DATA 4 OLJUM(IG) )I

46 - -UM2 4OLAUM(16) ~
47 - astaok3st

49 - .DATA 4 _8UbzntryFT3200L 1;

SO DAI I02 &_SubfntryYhlflI;H

Pages



t Filet BIwSci2AM
Date: 7/20/92

51 - .0AL 4 DLW(24) )

52 .D*Ah 4 OWIU24) )
53- taki

54- .DWIA 0

55 - .DkTh I faaub8tryFF32H );

56 - DATA I G SubButrYFYINISB 1

57 DATA 4 IW(O) )

58 - DATA 4 W(O) )

59 -rotackl::

60- *D*~h40

61 - .DATA & 4SubEntryF1T32ROW)

62 - .DATA 4 £Bu~bfltry.FflhISBH

63 - *DATA 4 OV(B)

64 - .DATA 4 GW(G) )

65 - rutack2st

66 - *DATA 0)

67 - DW j A_8ubntryYFT32Rf

68 - .DATA 4 £6Sub~ntry3YIKIBE )

69 - .DATR ( FIDW(16) )
70 - DOATA ( FIO(16) 1

71 - zutack3Is

72 - DATA 0 ~~uz.P3~)
73 - .DATA 4 £lublntryFFTIBU );

75 - .DATA 4 Ot(24) )

76 - .DATA 4 JW(24) )
77 -

78 -)

Page: 2



Date: 7/20/92 File: D:STACK3.AM4

I - /* Initialitzation for synthetic stack frames for 7FITK

2 - retaok& and astaokU are starting SAP values for chip W.

3 - Ono free spot left in stacks for interrupt.

6 - / absolute bass addresses fro memory map '

7 - #def ine PRIM 0x00000

8 - #define VOUIR.PORT 0x2000O

9 - Odsf ins W1TM'UELM!CH 0x40000

10 -

11 - #define COLUM(N) (FOIRPORT + MN * 2)

12 - #define ROW(M) (FO(JRPORT + (N) - 64)

13 - #def ine OU?ýOFFSZT 0x800

14 -

15 - tsp325()

16 -

17 - /

is -

19 - SBUWJTZN FINISH();

20 - SUBROUTINE YP1T32OL( zr325rof In-Data, zr325rof Out-Data);

21 - SUBROUTINE YFT1XO(zr325rof InData, zr325ref Out-.Data);

22 - SBUROUTINE FFTIR1(zr325rof lIn Data, sr325ref Gait.Data);

23 - SBtJROUTINE m11l2(zr325srf In .Data. zr325rof Out-Data)'

24 - SUBPZMIJIM8 FPT1K.3(zr325rof In Data, zr325rof out-Data);

25 -

26 - .Zxrm )subintry Fur=B

27 - ZXMX __P,'ntryFPT32COL

28 - . ZaWN _pubantryjFýlNO

29 - .aMM -Sub~ntryFFýlJl

30 - .ZXMX Subantry.F1T1F

31 - AXER _SuhntryMT1X

32 -

33 - fZACM::

34 - DATA 0)

35 - Octacks::

36 - DATA 0)

37 - DATA 4 aSubgntry1FM32COL
38 - .DATA 4 aSubmntryPIUIBU 1
39 - -DhATA OLWUM(0)

40 - .DIATA CAWU(0) )

41 -catacklss

42- DA2A 40;

- DMM & -Sub~ntryYPT32COL )I

44 - DA~h 4 SBubntryYINh3U

45 - .DIATA DLWU(8) )

44 - .0MA ORLUU(G)

47 - astaak2so

49 - .DATA 4 iflub~ntryjfT32CDL

50 - .D&A 4 SWu~ntryjINISM)

Page:



Fils: B:ffMMAWK.
Data: 7/20/92

51 - .Dm2 4 LU3U(16) )

52 - DMAA { LUM(16) )

53 - astaak3lti

54 - DhATA 0

55 - .Dnh 4 £6ub~ntry.yflT320DL

56 - .0~' W 4 &flubgntry.YmIBB );

57 - .DMT 4COLWU(24) )

56 .DXU 4 OLUMU(24) )

59 - rgtackgO:

60 - v0AT!A 0

61 - .= & - ubxntry..YPTZO )

62 - .0"~A i £ ub~ntry-YlNIBB

63 - .DM~ (CaLuW4(o) + OtM_!OFFBRT)

64 - PWAF 4 FOj I,

65 - retazkli:

66 - .DA~h 0)1

67 - .DAT? 4 Sub~ntrY-7lTl.Kl1

68 - .DMAT 4 SubRntrY.YINISH )

69 - .DATA 4(CoLuKII(s) + OIMOFFSET) 1;

70 - .DATA. rOI(B)

71 - retack2t3

72 - DATA 0)

73 - .DATA. I aSub~fltryYflX2 )

74 - .DMAT I &SubRntry..YIN18H )

75 - oDA2h I jCoL1.3(16) * OUTOFFSET) )

-, 76 - UDAMA 4 WW(26) )
71 rmtac*3,:s

76 - DATA. 0 1
79 p=.AT? 4 £...ubitntry..Y7F1

3

so . . DATA 4 &_Bubantry....INISBH)

al V .ATA. 4 jCaLtDM24) + cWZ_.oFF83T) )

82 - VDAT? ( IO(24) )

83 - #

84 -)
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Data: 7/20/92 File: B:B2AC14.AU4

1-/* Initialization for synthetic stack trauman for RCMY

2 stacek is starting $81 value.

3 -S

4-

S - I absoluta baas addresses from memory amp *

6 - *4fine FRAN 0x00000

7 # def ine WOURJCMOR X20000

8 # define NTThWU8 AT 0x40000

9-

10 # define COWLUN S

11 # def ine 0112.33 25

12-

13 -zap325()

14-

15 -/

16

17 - 8UUBITZN 1IWX5BOg

is - UUUWflXMM 3001( sa326int CaafLsngth,

Is - tr325int Outj~ength,

20 - tr325raf Coefficienta,

21 - xr325rof IT%-Data,

22 - ar325ret Out _Data)j

23 -

24 - MaWZN asubltry-YnuISn

25 - . 32W 8-ub~ntryRCONV

26 -

27 -

28 - /* define stark with parametars in reverse ordar '

29 - BZACE8::

30 - DT

31 - stackis

32 - .DhAU O0

33 - .DATA j A-Bub~ntryPCUV )

34 - .DATR &_SubgntryJXUIN8 11

35 - .DMATA (M0jkOR~ + 0x1003)g

36 - OATRA (Y(OU PO~r + COCF.LZMI 1

37 - .DATA V OURjin I
38 - .DATA 4 01TJ._3 );

39 - .DATA 4 27 )j

40 - 0/

41 -



!
Date: 7/20/92 File: BSf.TIM.AM

I - /* Znitialization for synthetic stack frame for CCOOV.

2 - stack it starting SBP value.

3-.,

4-

5 - /* abeolute baum addrsses from memory asp /

i - *define PRAN 0z00000

7 - idefine IVOUVJ_.OWR 0120000

8 - "efine Wff ,TqJ.A= Ox40000
S'9-

10 - #define OO0_/LZ 4

11 - #define OUTLIN 13

12-

13 - zap325()

14- {
15 -

16-

17 - 8UBROUTNI FINISBH);

18 - SUBaROUFMu CCDUV( zr325int CosefLength,

19 - zz325Int Out_ angtb,

20 - zr325ref Coefflolentsa

21 - zr325ref In_Data,

22 - ar32Sref Out..Data);

23-

24 - .TERN .BubBntryjZUISH

25 - .CTRX .. ,bh~r,_ccCtV

26-

27 -

20 - /* define stack with paraemters In reverse order */

29 - 8TAC~ts

30 - DAMA 0 )l
31 - etackst

32 - .DAM 0};

33 - .DATA 4 &_ubhntzy.CDW )
34 - .DATA 4 _sub~ntryFyIIH );

35 - .DA•A ((FOUR_POR + 0xl00 );

36 - .DAA (FORFORT_ 4 CF•UM-2) I;

37 - .DATA 4 FOURO );

38 - .DTA T OUTW_LRL )i

39 - .DA 4 WCOULZ );

40 - 1/

41 - )

L9
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uatat 7/20/22 riles 5:NZAC&G.Am

i - /* Ini1tialisatiton for synthetic satck frasa for F=M~.

2 - stack is starting SOP Value.
3 -*

5 - /* absolute base addresesa from memory map '

6 - *def ian PRAM ONOOOOO

7 - #dafiva =OU.)Ori Ojs20000

8 - #8sf ins OM~A J.LA= OX40000

9 -

10 - #def ine CDWL a

11 - #def ine OUPTLR 25

12 -

13 - zop325()

14 - 4

is /#

16-

17 - URROMN1 MUMBB);

is - URF4MMXE RWR2( xr325int Coet~ongth,

19 -zr325int Outjaaqth,

20 - sr325rof Coef ficients,

21 - sr325rof In Data,

22 - zr325ref OutP.ata)3

23 -

24 - ZMXZR SBub~ntryFINISH

25 KammER 8Ruhnt~ry.Oi

26-

27-

28 - I define stack with parsamtero In reverse, order *

29 - Trk=:t

30 - .DMA0)

31 - otackti

32 - .DMTA(

33 - .DAMft 4 a.Iuntryj-fR )j

34 - .DAMA 4 ddubzntqjZU1X1 )I
35 - .DMP 4 (YOM-PON + OR100) )

36 - -DATA 4 (FGUILPORT + 002rFLZN) )
37 - .DATA 4 WOURPM1)
38 - .DIATA Mfý_IJTLN

39 - .DATA 4 DENLW

40 - #/

41 -)



Date$ 7/20/92 
file: 2:B8TCK.Afi

I1- /* Inuitialization for synthetic stack trans for CCOR-~

5 /* absolute bass addresses frM VM~rY VAmP

7 #define YOAURBJAQ2000

9-

10 #def.ine COWLU 4

11 # define 011LUU 13

12-

13 -za9325()

15-

16-

17 -u~jl 8U rZ immIISB;

Is - EDFACIMIN CCOM3C ir325int Cait Lenth,

19 a r325int 0utj.euigtb,

20 - .325ref coefticients,

21 - in325reg In-Data,

22 - u325ref Outjaota);

23-

24 -M _AN ubintry 713185

25 -XT _ft3 uhiitry...cCW

oo 26-

27-

28 /*I define stack with Parameters in reverse order ~
29 - STACKS:t

30 - DATA 0)

31 - stack::

32 - *DM 0O)

33 - .DATA 4&_8ubfntry.ccD= 1;

34 - .DATA 4 £auhantryjaiBS )I

35 - .DXAA4 (1F=-Mw OXIOC) )

35 - .DATA 4 VW3.Y0= *COXWjU'2)

37 - .DAMA 4 l0UPjT

39 - -DM2 f OLMt.3 )

39 - .DM! I cowUL )

40 -V

41 -

Iq~



Dates 7/20/92 Files Bi:RZ•ci.A*

1 - /* Initialization for synthetic stack fram far POL2RECT.

2 - Stack is starting SP value.
3 -

4-

S - /* absolute bahe addresse frm memory ap m /

6 - #define VRAM 0xO000O

7 - #define 1OtuPCX Ox20000

a - #define 8MtU8 mIAM 0x40000

9-

10 - #def ine LNNG'I 200

11-

12 - sep325()
13 - {
14 -#

15-

16 - 8UBROU'N M POL22RCT(zr325int Length, zr32Sref InData, zr32Sef Out-Data);

17 - 8URFA INZ FINIaB( );

is -
19 - .z -a .h'uRtry_POL2jMcT

20 - .ExU, Ehb~ntry.FNESg

21-

22-

23 - / define staok with parmters In reverse order d /

24 - BIACYsa

25 - .DA( 0 )1

26 - etaks•
27 - ,D&h 0 )1

28 - .DATA ( 6_u Entry_POL•2hCT );

29 - .DATA 4 &_Sub~ntryFINIB );

30 - .DA2•A F _ULR • };

31 - .DATA F 7UkPOW)

32 - .DATA { LE );

33 - #/

34 - )
35 -

Pages



a
Dates 7/20/92 File: B:•TACU9.AI

I
1 - /* Initialisation for synthetic stack fram for Pl0L2X"T.g 2 - stack is starting SlP value.

3 - 0/
4-

S- /a abeolute base addresses from mmory asp

6 - #define FRA 0xOOCOG

7 - #defines FOMUPW 0x20000

4 - #define OnT. ULLATC Ox40000

9-

10 - "f ine LI S 200

12 - sp325()
13 - (
14 - /0
15-

16 - SUtRJTIRN iCT2]POL(sr325int Length, zr325rtf InData, sr325rtf Out.Data)l

17 - BUUPAXIfl' FInIaB();
18 -

19 -MW .EIub~ntryflICT2POL

20 - .MMM~ _P ubztryINI,

21 -

22 -

23 - /* defin, otack with parameters In reverse order '/

24 - BTACKss

25 - .DATA( 0)

26 - stack:s

27 - .T (

20 - .DATA ( _Sub'ntryR CT2POL );

29 - .DATA I Asub~ntry_yINXH );

30 - .DATA ( FouRC );

31 - .- AMA f FOoUre );

32 - .DAMA ( )1

33 - #/

34 -

Pages
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Datal 7/20/92 File. fl:BUZC.AE

I - /. Znitialization for synthetic stack frames for mTIX benchmark

2 - taokM to sterting $55 value for ahip N.

3 - 23eoution mequenoe is to start at NUI..UW, return to do oolume,

4 - return to synchronize for second wave, pop parameters, return

5 - to do r:e, th•n return to finish.

6 - One free spot left in etacks for interrupt.

7 -/

U-

9 - /* absolute base addresses from mmo-ry map '

10 - #define PRAK xO000

11 - #def ine F =_PaT 0x20000

12 - #define MTAmUGSý_L 0x40000

13 -

14 - #define COLWM(M) (FOURioMr + (N) * 2)

15 - define Wd(3) (C1OU RT + (N) * 64)

16 - #define UTfli1S oxaO0

17 -

10 - ep325()

19 - 4
20 - /#

21 -

22 - SinUSA IM FPN1aH0)

23 - iUBmR URz SYNCNXuO,();

24 - IUaXITUINM FFT320M(Zr325rsef In Data, zr325ref Out.Data)

25 - BUSWTXN FFTlJZO(zr325ref In Data, zr325ref Out Data);

26 - BuROI"Mn •l7TIl(zr325ref In-Data, zr325r•f Out-Data);

27 - 8UU LII7 m1T212(zr32Sref In-Datea, zr325ref Out Data);

28 - BROUTIN mlJl3(zr325rsef inData, zr325rof OutData);

29 -

30 - .W51RN 8ublntry FINISH

31 - .ErNN _Subzntry_sywcumcIZi

32 - .rM _IBublntryVM32COL

33 - .EMUE _=ubzntry_Ml m

34 - .ZiX•N .uIlRuZtry mIii

35 - .XMMX U-nh _ntryFTIX2

36 - .EBN _suubntry_....mI3

37 -

38 - IMDItsa

39 - .D•A( 0;

40 - stackOst

41 - .T 0

42 - -DATA *_48uRntryPFT32COL

43 - .DAMA 4 a_8ub~ntr,_4Y 6Ci I );

44 - .DMTA 4OLWUI() );

45 - .DAM 4 (cmU(o) )g

4G - .DMa 4 £SunatrzyMjMl ):

47 - .-DTA 4 &_suhntryjIIxSU );

46 - .DAT (CxCUM(0) ' 0xl OFFSET) );

49 - .- M 4Kw(0) ):
50 - eaeaklis

Pages I



"ot., 7/20192 File: BIZUACIM.A4N

52 - DM1T j IR_6uhhtxyFFT32CDL

53 - D=5~ 4 a ub~xatr"YMTr4rMz3 );
54 - -DATA 4 OLWUM()

55 - .D=T 4DLWU (8) )

56 - .D=T 4 8umritryflMIZ1 );
57 - .0mT? 4 8ublIntryFIMISX8 );
so - .0m21 4 COLWI(s) + DIO1P8RT) )
59 - .bMAT? FAM6)
60 - staok2st

62 DM (b1 G -8ub~lftryM32COL

63 D= .021 4 18 Khtr"YN6ThOIZ1 )

64 WMOAA ( OLWUM(16) 11

65 -D.ATA. ( COLEMIN) ;
66 - -DATA. 4 £Bub~atrjFlIT2 )
67 - .bUM. &aSRub~tryYINISa

68 - .bAT?. (COLWUN(16) + OIP._7BLT) )
69 - .bD=? 4 M(16) I
70 - satck3st

71 - -DATA.40o

72 - DATA1 & 18ubgntryM32CL 1;

73 - -DATA. 4 a..ubntr~y87Nmwnz

74 - .DAT?. 4 LUaU(24) )
75 - -DATA. 4 IAfl(24) I
76 - .Dll?. 4 &auhntryýYPTIM3)

77 - .DMT 4 6..umatryJYIuZIA
71 - .DAT?. (CMAUM(24) + CSlVT 83T) )3
79 - .DAT?. 4 I(24 );

so - 0/

Pages 2



Date: 7/20/92 File& B:8WZW.AM4

2 - /* Cod, to start all VaP chip. -laultaneouely. The start address of the
2 - Oce to be mwated at the signal should be the firet value an the
3 - stack. Placed at abmolute location 0 to smplify mtartup.

4 -'

5-
6 - /" abeolute base -ddre-ee from mmomy mop ,,
7 - Noel e PR*3 0xOOOO

8 - adeflie iMOicm Ox2O000

9 - Idelice JU•!M¶8 LA2T. 0X40000

10 -

11 - /0 statue bit value to indicate start t/

12 - Ideflae MART 2

13 -

14 - sop325()

25 - 4
16 - /1
17 - .ov 0

IS - BUBFaMnzua SMaUp(

19 - (
20 - ro aest status bits *1

21 - LDR 10 -> SX;

22 - BTL $X -2- STTU8LA2•;

23 -

24 - /* get smak f"r start bit /
25 - 1011 OS8 -2, 51;
26-

27 - Voll:s

28 - AMID(s[T] W2AWT8LA2, SX;
29 - WO (ZR], 01;

30 -

31 - )
32 - 1/

33 - )

Page:



Dates 7/20/92 
File: 2:8TkIUS.AE

1 / Toost program to ask eoran -status bite follow 68020 bits

3 - /* absolute base Od4Jmeem troll ommorY PAP *

4 - dine FRAN OxO0000

5 - #4ef ine 1,0•_1• x P 20000

G 6 - #dtine MATU8LAB. OX40000

7-

8 - mp3251)

10-

11 - /9

12 - SUBIUZ INX()

13-{

14 - Top::

15 - LDR a=TUp8LAC -

16 - =2T $LC , ST-3 U LA2cUi

17 - Loops
Is - mall [ A WATUBPA-H, SLC -= $X1

19 - 4503 93, S15

20 - MC [EI), Loopi

21 -

22 - JXP Top;

23 - I

24 - V/

25 - }

pages
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Date: 7/20/92 File: B*:YC.ASI

I - /* Code to synchronize VSPs between waves of FFT. also needs to pop the

2 - paremetere of the first wave before returning.

3 - 0/

4-

S - /0 abeolute base addresee frem memory map y/

6 - *defUne flA OxOOOOG

7 - Idefine rO4U]jPWm 0at20000

8 - #deflne BTA2W'8 LAM 0x40000

9-

10 - /* status bit value to indicate wave syn

11 - #define WhVR 1

12 -

13 - /* define number of parameters we supposedly ment /

14 - #define NUKPAMM 2

15 -

16 - zep325()

17 - j

18- /#

19 - .BM ACCZW

20-

21 - M MIM BY SYNCMWIUZ()

22 - {

23 - / m eat status bit '/

24 - LDR #WV -: $X1

25 - $Tf IX -: BTMU8_LAPM;

26-

27 - /* get rid of synthetic parameter. 'I

28 - ADDR #NIPARAM, $SP;

29-

30-

31 - / w ait for mync response '/

32 - Polls

33- AMMI: • TA] JU8 LL--- , SX;

34- LOOP (E), #1;

35-

36- )

37 - 9/

38 - )

Page:



I
Data: 7/20/92 Film: BzTHBTl.AinI

I - I' Test program to see if ores work /

2-

3 - /* absolute base addresses from m rmoyr map 'I

4 - #define PRAM Ox00000

5 - ef in vIkmP= 0x20000

6- def ine WoM5 LATCH Ox40000

7-

S - wp325()
9-4

10 int 1;

11 - float x;

12 -

1- - put a vector of (1.0, x) at PRAN + 0x400 'I

14- I#

15 - .080 (PRAN * 0x400)

16 -/

17 - for (1 * 0, x - 0.01 1 4 161 J++, x 4- 1.0)
16- 4

19- /9

20- .DAT& 1 1.0, IUMMloat(x) );

21- V/

22- )

2:-

24- /' put a vector of (x, 1.0) at FOUR-PORT*/

25 - /9
26 - .ORD OUR PORP

27 - f/

28 - for (- 0, x- 0.0; 1 < 16; J++, x +- 1.0)

29- -

30- /-

31 - .DATA 4 Ixim Float(K), 1.0 It

32 - #/

33- )

34 -

35 - /#

36 - .(Q

37 - BU•RTIM MAIN()

38 - {

39 - /t write 0 to status latch '/

40 - LDR #0 -> $X;

41 - Bam SX -> 8TATUS_LATCH;

42 -

43 - /' add two coqmplex vectors and store '/

44 - LDC:(16) (PRAM + Ox400) -) $CO;

45 - ADDC:(16) FOJRFOW, SCO -> $Co;

46 - 8T C3(16) $CO -> 1U PGOI;

47 -

48 - / k asks sure we are finished, then wilte 13 to status latch a/

49 - SYUCs(CUHUaiSJ];

50 - LDR #3 -> SX;

S~Page:

I



Datat 7/20/92 Pile: B:TBSTI.AM4

51 - STR $X -> WSklTU8_LATCH;

52 -

53 -

5' -



Date: 7/20/92 File: B:TrT2,ASK

1 - /0 Test program for Zoran interrupts. Main routine in an infinite loop
2 - that decrements SLC (starting at 0 and wrapping around in 16 bits).

3 - Interrupt routine "et status and halts. After restart, it cleara

4 - status again and returns to infinite loop.
5 - a/

7 - /a absolute base addresses from emory p m /

0 - #61i ine PRAM 0100000

9 - #def in. 1OLPCRT OX20000

10 - #defin. STATUd LATf 0x40000

11 -

12 - Zap325()

13 - 1

14 - /#

15 -

16 - UIVMM•UPT SUROnlNE SET_HALT()

17 -

18 -

19 - /0 write is to status latch and wait for 1E1 0/

20 - LDR #3 -> .X;

21 - sB SX -> STATUSBJAJ;

22 - InfLoops,

23 - AMjjs(2] SIP, #90101000;

24 - JH)c [ISR), ZnfLoop;

25-

.0 26 - /0 after resume, clear status bits 0/

27 - LDO #0 $ X

28 - STR $X -> 8TATULLTCA ;

29 - )

30 -

31 - .Ez lNE _qubzntryaT B_SLT;

32 -

33 - SU60UATIRM MAIN()

34 - {
35 - / s set interrupt vector (happens to be 0, but why not) 0/

36 - LDR A SubEntry BET HALT -> SIP;

37 -

38 - i W write 0 to status latch 0/

39 - LOD #0 SX;

40 - STR SX - STATULATC;

41 -

42 - /0 infinite loop decrementing $1, from 0 0/

43 - MMWR SX -> SLC;

44 - Loopsi

45 - 3)P: [DL) Loop;

46 -

47 - )

48 -

49 - 9/

50-

Page: I

I



I

APPENDIX C

PC INTERFACE PROGRAMS

C-1



Date8 7/10/92 File: 1O.C
Biae: 16156 Last Modified: Tue Jun 30 16:19:12 1992

2 - a ModuleaTest Module --- Tet 1/o boards.
3a
4 - * AuthosJohn Stevens
5a
6 - OpTrlfbt:CQpYrlght 1988-1992 bygace Tech Corporation,7 Ft C611ono, Colorado, USA. All ghtoRse•rved.

ga *
9 - a Btatus:ThI program is the sole property of Space Tech Corporation

10 :and Is covered qnder non-disclosure agreements. This proiran
11 ism PROPRIETARY / CONFIDENTIAL / TRADE SECRET and disclosure
12 *of the contents of this doeument shall constitute violation
13 - Qof cloned ajremsnts and will result in severe !n!t2es.
15 -

16 - /aat**a t5aat a*aa5*t •a**aaaaa*aat ***ta5aaaaat~at**tt****a

27 - :Modfied by Steven Sharp to add file upload/download capability.16 I - Itaaaaaaaatal/aa* allaaaa baa a * l laaaaaaa it t aaaaaaaaaaa Raaalltta.5 **a*tltal aaat/

19-
20- #Includ@<stdIo.h>
21 - include<stdlib.h>
22 includecconio.h b
23 -include<cty pe.b
24 - 6Include<dos.h>
25 - *includemstring.b>
26 - includel9tim.b2>
27 -
28 - typedefunsignedlntUlgT/
29 -
30 - /*Status reglster bit defines.'/
31 -ids inePf ltlYl ZRROxO004
32 -definewR FUII EMPTL0xO008
33 - Odefine FIPO-PULLOxO010
34 - IdefineWRoPIP0•ALO- EM OxOO20
35 - IdeflueinaRI--I10F - UOXOO40
36 -
37 - IdefineD FIFO SHTOX0080
38 - 1defineRD-TIl-O-ULLOx0100
39 - 6defineRD-FIFO-ALHOT IPTY•0x0200
40 #*e finonD-eIWY LMO- S:V0ULLOxO400
41-
42 - /alle forest flsgsa/
43 #-te! mte INVALID 0

44 def in. U FORMAT 1
45- de! no sPOURT 2
46 -
47 /aaxmu filenamep lengthl must be less than 255 ~
48 #define EANZ01 50
49 -
50 "stut4ScUINTBa," - OZ3401
51 - tatIoUIxTlartg
52:-53 - ----------------------------------------------------.. ....... .. . .. .

54- Itoutine:81tat( --- Show the value of the status register.
55
56 - Input.atlame- ame I/O addrems of board to check.
57------------------- I----------------------------------------------------------a
58 -
59 - static
60 - voidShowGtat(intflaae)
61 - (
62 - registerinti;
63 - reoisterInti;
64 - autolntblt;
65 -
66 - statlcbarflrBtatalgil -

67 -
ro

69 JParity arrOr -"
69 'write FFro ampy -,
70 *Writs FIFO ,,Tlr

72 -Write FIFO Almost Eullp

74 -teed FulOlull

75 ' Read FIFO Almsa Dty a
76 - lad FIFO Almost ul -
77 -

2

76-
79 -/*Print status header.*/

62 t•mtbackgroqn( I );
63 cprint.( o rd Status \r\n)j;
64 textcolor( LIOZUITRAy
56 t-tba•kground( ILAcx66 -

67 - /*Road the status rrt, display values.o/
88 - - Inport(sas, ;
69-
90 - /*Print values.*/
91 for (I ( 0, bit i 3D I1OAJE _FL i 0 i--)
92 )*~print status valuee.61
94 - rinttc statfsg~iI 3
95i (j A bit)96 -

97 c etolor( LINRAURYg
968 textbackgroundiP A)
9599 - aprintf( FaJ..e, rn)i;

100
101 oleo

103 - amolor( ZLMM j
104 -textba kuroundl .W

5 UX3
105 - prIAtf C Tz~m (4,51;
106 l - 1

106 -

109 - /'eeet to normal o0=9.6/

Pages



Date: 7/10/92 Fil': 10.C
Size: 16156 Last modified: Tom Jun 30 16:19:12 1992

110 - texteolor( LIHTOGR&Y );

111 taxtbackground( BLAMK
112-)113

114 - /6Uhow value of status bits in status reg~eter.a/
115 printff(*tatus Bit Values - 0xMR." 3116-
117-
118- ------ -. ..----------------------------------------------------------------------
119 - IUouti :Ozetlexflo() --- Get a hexadecimal number.
120
121 - ftuarnslneturna an integer number.
122 ----- ------------- . . . . . . . . ..-. .-- - - - - - - - - - - - - -------
123 s
124 - etatlc
125 - uhaigned longFetBiWo(intlilmt)
126 (127 register Inti;126 - later ntc;
129 an unsllnd longret;

130 1utoahars [9]
131 a1:32 -/east characer from the kaytXatd.a/
133 - or (1 01 II
IL34
235 ;~J•h hrm~o*
136 - do
137 - 4
138-a- getah(
139 a - tolower( a )
140 if (I (a ý- 'a LS a .- 'f') &
141 I ). '0' &A c 4- "9')) &
142 c!- I\b' A& c I- '\r')
143 putch( 'x07' );144- w hile (1 (© > '5' aaG € " f') 55145 I I (c -a '0" ca a - I'') a

146 - a- '\b' I a l" '\;');
147 -
148 - /*Break out on carriage return.*/
149 iras
1I0 - -b\ra)
151 -
152 - /*Charater.*/
153 - witch a a154-4

155 came

157 if O

159-ag puteC "\b \b )g
160 -161 - breeki,
162- defaultl
163 - if (1 4 limit)
164 - 4165 - fifi.. I*] - char) a;
166 - if(1 - '0"
167 - puth( a );
166 -
169 - Break;
170 -
171 -172 -

173 - /*Return number.*/
374 ascanf D f, *%1x, &ret);
175 - retusl -ret 3p

176 -
179 ----------l) - Pitanitge euei hxdciadeia
1:0 a nd binary.

181 static182 - joInpzte:Val(UValuetoprnt

187- (

188 - reglstarinti;
169 - regstar•lI•Tbl;
190 - autbaratr(20];
191 -
192 -ast[19J -
193- fr (iIS I:bt *Is 1 0, 1--)194 -if ((1 * 1) 6 -m, 0)
195- att( 1 1
196 le•e
197 - i
196-I (Val G bit)
199 - tr (ii
200 else
201-lr(I- 0
202 - t -
203 - )
204-
205 - oprintf('00f04x %Su tag, Val, Val, Str);220620 -7

206 - --- -.-..- - -- --.--.---.- - --...---.-- -
209 "/ Uoutle.:snitflp() --- Initialise the display.
210 -
211 - InpmtasPort- Corrent port value for reads and writes.

11
214 - static
215 - vold1nlWDep(U1g'Tort)
216 (
217 )*Print aurrent base number.*/
218 - gotaiy(l, 14);

... .. s

1ae



Date: 7/10/92 Filen !0.C
Size: 16156 Last Modified: TLe Jun 30 16:1g:12 1992

219 - clreoli);
220 te.tcolor( LIGHTILUE)
221 t-xt c~groundt LIGHQAY );
222 pQ( pI "Base Value" ;
223 UK tcolr( LIGOTGRAY )
224 textbackground( BLACK );
225 - t
226 -P1=1a( Dana.
218 /*Print current port number.*/
29 15);

231 -textoo or( LIOU TSLUZ )I
23 - textbsokground C LIGUTGRAY 3
233 cputs( 'ort Value* ;
234 teaxtcolor( LIGHTGRAY )-
235 t tbackground( BLUM );
236 -oputse (: );237-P~rtVal( IPort );
237 -
239
240- .

241 - RoutineChecklile() - Chek file type and possibly oont length
242 -
243 - InputesFilenamm- Filename for file to check
245 - OutputaslSize- Pointer to UZIT to store length in words
244246 -

247 - ReturnasType of file, ECJ ORNAT or 8j0348T
241---------------------------------------------------- -------249 -250 - static
251 - intCb•hk•ilo( char *Filename, UINT *Rise
252
253 FZIn/ile;
254 into;
255 -unsigned long nibbles;
256
257 - /'open file /
258 nF lne - fopen( Filename, "rtl);
259 it (lInrile)
260 -
261 returnC IIVALID )j
262 - )
263 -
264 - /*find first non-white character A/
265 - while ( isnpace(c - getc(lnFile))
266 -267 -

266 - /0chIck for a format 0/
269 - if (c - 181)
270271 - folo(en mle)-;

272 returna S._Rlik );
273 - )
274 -
275 - /*otherwise hex format, count nibbles */
276 - nibble. - ;
277 -wile ( c I- nO )
278-
279 if (lasdigit(c) )
280 -nibbles...
281 - - gesc(toC le);202 - )
283
284 " /I* •c o size In words (rounding up) and return format .

26 *a 2ize - (nibbleas 3) 3- 2;
287 retuarn( V AF 3VAT ;266e - )
209g -
2g0 -7 -- - -- - -.- --- --- ----..---..- --- --.---.-.--
291 "I D;outIneUplod() --- Transfer memory from VPB to PC file
292 -
293 - I mnputssltart- start addrees
294 - I8Sze- Number of words to transfer (should be even)
295 - JFlenamoe- Name of destination file
296 ---- - -- _---- ..........-----. .. ......................297 -290 - static
299 - voIdUpload( unsigned long Start, U21? Size, char *FOilenum
300
301 ;-lF *Outfil;
302 - UINT Count;
303 - UST Vai;304 -
305- /open output file a/
306 Outtile - fopen(Filenams, vt),
307 if ( Outfile - NULL )308
309 - col 1, 23);

.310 ,."
311 - cprintri'ile open failed \z07);
312 -als3) o
313 -
314- )

1i6 "/sand transfer coamand to VI "
317 -utport(Port2 OxO021);
319 a-lodsizenlngword 0/
319 outport(Port , ( 1
320 outpo(Port , (lnt) Strt);
321 outport (Part, lint) (Start 2 16));
322 - outporti( Port, OxO00)g

323 -
324 - /*upload file a/
325 for (Count - 0; Count < Size; Count+#)
326 - u
327 lit uAtl read fifo not mp ty /

I~~~~r P 3 I I L I III II



Date: 7/10/92 File: IO.C
Size: 16156 Last Nodified: Tue Jun 30 16:19:12 1992

312g - while ( I£( inport(Sass + 2) & RpDF1FX1OWITT)
320-
330

331 go'qt word and send to file 0/
332 Va. inport Port~
33 - mt(Otl, 404x-1 Val);
34- 1 ( Counts aOxf) -- Oxf

335 r uto( \',nOutfiim);
3336 f* cIll O)fl):1 uO a' Cu file))
30- -
341-
342 pad aotnd d:Getwr --- reads hex words from input file

34 von dfeety than mcanf for odd I of bytem
345 Inpotma Zafile- input film pointer

346-
347 2R~urns~ntgervalue reed

349-
350 s tatic
351 -UIUTGet~ord( FILN *Infile
352 -(
353 -autGUISTVall
354 - utainte;
355 - taticcharluff51 - 100001;
356 - utointnibbie;357-
358 -/*read 4 bex digites'
359 -for (nibble - 0; nibble -c 4; nibble++)

3601 )*/ ignore embedded spacee end newlinem '
36: while ( imepae~c~ - getc(Infile))

364
366 if (iSMIdigitte

368 - 3ffnibble) al
369 )

3741 mm
375 3

17! rit"M Ceg haraoter %Q in file \XQ71, e)l
379 1 - 1ep2'
360 -Sut11 1.1 - '0';

334 -/'Convert to integer 0/
385 s ecanflBut Ox" &Val);
366 - eurn (al

389--------------- -------------------------------------------------- --- --
39 -1 Ruin~enloc( -- Transfer block from PC file to WH memory

391-3 92 Zan Inpt: Infile- input file pointer
393 a t~ar-Start address
394 -Size- Number of words to transfer, will pad to even

397 s tatic
396 voidsendsliock( 111.3 'infile, unsigned long Start, UXIW Size
39-
400 - melI;
401 U to vpu a/

405 r. mPtime in longwordm, round up a
406 -outot Pot soa + 1) ) )406- out tPo at 4 start ~16)
4 07 out rt Port, at start 33 6)
409 -outport Port:, l
410-411 -/*handle expected numbe r of words A/
412 o Cut-0 on mso; count++)
413-(

4414- )*read aword from file 0/
41 a GCutWord~ltl)

41 /*wiutlwri te wordnotful

422 -outport(Part, Val);
423-
424-
425 -/sif mumbe of watts Is o6d, pad with 0 '
426 1 if (lime G 1)
427-
426 ).'Wait until write fifo not full a/
429 -while ( 1( inport(Dlee 2) a VR IIOWUL)

I3
43,

43U*i*Pfi od0
43IupnPrOOO)



Dates 7/20/92 Latilese~t. .~3 7 10-IOC
sizes 16156 LsMoiid uJn3016:19212 19922

437 -

439 ;; otn:mmod) ?sxfor PC f ile to VPH Emory
440-I
44'1 - Inputs: Filename- UNa of source tile
442 -IFormat- Input file format
44 Start- Start address

444 - Size,- Number-o a words-to-transfer----------------------445------ -- --------------------

446
447 -static
448 -void Download( char *Filename, lot Formst, unsigned long Start, gUNT Siie)
4493 h- *uis

45I intDoneg
452 laite:

43
454 -/*open Input file '

455- jt1e - loen(Fleoname, "rt')

451-gtv 1. 23)s

460 CariitK FIleII open failed \X071);
42-returnj

463-
464-
465 /*check format and handle each a/
466 -If ( Format - HX FOROW )
467 " lok 4nie trSz468 edlok t
469 -ie tr, )
470 olseo

471 ).a~ format _ handle Each record '
473 -Done . 01
474 -while (Bj"n)
475-(
476 )*/find next 18' and get record tpe'
477 -while ( (c . 9getcInfile)) 1. aB m6fic I- B0Y)

4 9 getc(Infile);

481 -/*handle each type '
452 If i(c -''

454 ) *got record 2anith and compute date words *

416 0 zen-l(2 so 3-3, 1) - 2
4:85 /*get start address '
459 - tsant(W1tile '%six, £Utart)l
490-
491 /*transfer data field '
492 Sedlook( Infix*, start, Size )
493 -)
494 axelse it (a - '7')
495-

97
S9 olseo It (a - 107)

500 4=11 1, 23);
502 coitaisn nd-ot-tile record \x071);
53 sLeeipt(3j1I: ia

56 -else

508 -got~y1, 23);
509 -02 cleo51 ~ int LSkipping unsexpected record type %~c in tile \x071, c);511 or ep(
512 11 - P(
513-)
514
5167

520---------------------------- --------
521 -
522 - voidmain(intargc,
523 - bareeargv)
524-4525 - eiterlu~lraij
526 -: I.-iterinte;
527 R ut unsigned 2ongitart:
528 - utoUINTs 3.-
529 -utocher butior(UAIU 3222+2) - 4 NAIS 13

530 - stochar*Filenemei
531 -aultOintt orm tj
532-
533 - /5@t command lime peromatereB/
534 -If (aro X- 1)
535-
536 )*GSet 1/O board base sddress.*/

it (ssocant(arqvi1l, 1W, Ilmee) 1- )
539 1 ~pitf( tdorr, Oirror, parameter one me~t be a
540-b*leeaim= I/O spai ires\
541-emta"12)g
542-

544- ae
545-



i Dates 1/10/92 Flle 22O1.C

_silt: 1516 Last Modified: Tus Jun 30 16:19:*1 1992

54 u a maimmd.*/
54'- 1
549 wi•.L C sommands: (B)ase, (P)ort, (R)ead, (W)rite, (U)pload, (D)•onload,550 - Q)uiLt)
551 

-

552 - /*Print current port number.*/
553 6 nit- p( Port)
554 -

5 55 /I*nitilizes the scrosu.*/
5 56 a o

557 -558 )*show the stadtus.*/

559 - 8bo ~tat( "
560 -
561 - /ot ommand.*/
562 go-. (1, 23)
564 Oprintil(Comimnd? 0);
565 -I ((a - getobeC)) -- Q' II a-'q')
566 broalk
567 -
560 - I*lxetota camad.*/
569 - Switcb ( tolowr( c )
570 - 1
571 - "b' S
572 as*Ot ba addres number.*/
573 - agotx(1, 23
174 

1,=eo2();
575 -rl nPatt('nter same Port Address Z"
576 -

$77 /tGot bax nu)be.o/57: S ame - astiem"o( 3 )
579
580 - /*Print current port number.*/

5143
583 -tmtco or( LI4); U3
584 tetbackgroundl LIGTGRAY3
585- cpute( -ame value.3
586 textcolor(( LIGOMRhY 33
507 textbackground( ALU MSa99 apusta(C s ");
589 ] rtVal( !a:.e );

50-brak
591
592 rt nuber./
593 ggtoxt l 1, 23)
594 ciroll;
595 cprilntf(LCnter Port Number > 3)
596 -

597 -/*Ot box numbear,/598 Par -~z Geto w~ojlo 3
599 -
600 - /*Print current part number.*/601 - gotox( 1, 15)j
6023 lel3
603 -tattco or( LraTSLuz
604 textbackground LIGUTGRA 3
605 =cputa( ort Valueo 1;
606 - textolor( LUGIOW AY 3;
607 taxtbackgroumnd (S cK)
600 eputa8( ':4);609-Prt•Val( Wart };
610 -brea, 1
611 - gage r's
612 ./Pead value from port.*/
613 Val . import( Wort );
614 -
615- /*Plint current port number•./

66617 -,1 = I ');, 17);
618 - Xtctlor( LIGNDLt• 3;
619 tGXtbackgrouncd( LIOHGN]AY 3;
620 cpUts( "Re• Value- )
621 sextColor( LITU 3;
622 � tXtbackground( LI 31
623 cputs( s I)
624 P rtVl( VaX 3,
625 break
626 came V's
627 /*Get port number.*/
628 ggto1Yji, 23);
G29 gCo1=8 1, 23

630 - opriLnt Z(Atar Value to Write 3)631 -

632 - /*Get box nuaber.*/
633 - Va - etazNo( 4 );
634 outport(Port, val);
635 -
636 - /*Print current port number./
637 - gotmyl, 16);
636 -?=1 cied
639 tQetc0lor( LIGWMLU31;
640 textbackgotund( LIZ[g'aM 3,
641 -cpute( o

4
rlte Velue 3j

642 - ftwtlor( LIOHTGU•y )."643 -ttbackgrou( MACK
644 MP•utaj VOL )

646 break647 cam "u' s
640 - / toe tart addrees.*/
649-gtzt1 23);
650 - 11
651 -aprint Roter Start Madreass3652 -
653 - /*Get bm number.*/
654 - stat - Gotmeo( a 3;
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Date: 7/10/92 Fle: 10.c
Size: 16156 Last modified: Tue Jun 30 16:19:12 1992

655 -
656 - /Get ,lse In worde./
657 got 1, 23);658 - Clreoii);659 - opriLtf( Inter Number of Longwords 3)
660 -
6621 -A- e e e o of worde4

664 -/aet filenaue./
665- gaotxy 1, 23)p
666 -creol()
667 printi(

1
lrter Destination Filenaom >

66 Flname- cgeta(Buffer);
669 -
670 - /*Prfor• upload operation */
671 Upload( start, size, Filenam);
672 3 beak;673 - pae 'd's
674- /Cat rulenmel. */

675- g91ac(1, 23);676 •rO |
677 cptintk'I'ntor Source FileMname
670 FPlena•e - cgeis(Suffor);
679 -
680 - Icheck format count words if hex format /
681 -Format - Checkfile( Filename, &Sils );662 -

663 - /*f hebx format, request start addresi sI
664 It (Format -- ikl FWOIMAT)665 -(

686 )-Get Start addrease.a/
687 - gotox(1, 23);
688 - 91=o1)
689 - cp ILtf(nter Start Address >
690 - Start * eGtlezMo( a );691 -
692 -

693 /*Perform download operation /
694 Download( Fileme, omt, Start, Bits )I
695 - break;
696 -197 -)

696 -
699 -70r0ar()I700

IPago: 7



4 Date: 7/10/92 File: 3:k \Io\1.0WD
size 15505 Last Modified: Tue Jun 30 15:19:34 18922

...a.. to ~...... 6-f lS..

2 P odule:Test Module -- Teat 1/0 boards.

4 Author:John Stevens

I1 'is PROPRIETARY /CONIFIDENTIAL / TRADE SECRET and diac osurot12 * of the contents of this documein t ahall constitute violation
13 :0of eined.ajreemnta n llrsl in severe penalties.

16 - includecstdio.h>
17 : Enclude'atdlib.hv

6 lincludecconio.h>19 -inolude'ct b3,h
20 -include~doeh;

21 -includecatring.h"
22 - Inoludectimaemt
23-

26 -/*Btatus register bit defines.*/
27 - defin&PAjIITY RRROxOOO4
28 - defineWR FIFO ZMPTYOxOOOS
29 - definellpoPIFULLOxOO1O
30 - defineWR-FIFO-AU4OST EMPTYOxOO2O
31 - definWR-FIFO:AUIOSTFULLOxO0Od
32-
33 - defineRD FIFO EIPTY0x0OU0
34 - defineRDflIFO- M LOK0100
35 - defineRD-FIF0-ALM=S EMPTYOx2O20
36: 6dfin6RDOALWCALNQTZULL0x04O

36 /*Pilo format flags*/
39 - *define INVALID 0
40 - I1fine X FORMAT 1
41 - define Sj08MAT 2
42-
43 - /'Mximum filename length; musnt be loea than 255 '
44 # define NAME SIZE 50
45S
4G - taticUlNTBame - 0E340;
47 - taticUlolyart;
49

50 F- Ioutine:Uhowltat() --- Show the value of the statusn register.
51-I
52I Inputa:Baae- Baa" 1/0 address of board to check.

54 stti

S6 vod~ho~tatint~asee
57 -4
58 regisatrinti;
59 - e~terintjl
60 - au*Lintbit;
61-
62 - tatiCchar*Stataeg[j

64- 'Parity Error
66 "Write FIFO yr.

67 " Write FIFO Almost Empty
66 'Write FIFO Almost Full-
69 -'Read FIFO Empty-
70 -'Read FIFO Ful1
71- 'Read 7110 Almoet Zmpty
72 - Read FIFO almoet Pull -
73 - )

74 /*iprint status header.*/
76 -tmbo~oni OPtA3

79 - crintf 1 0/ Bord Statue \rAn');
a0 - tcolor( LIGHTGRAY 3
81 textbeokground( SLAcK )
62-
63 -/'Read the statue 3rtdslyV "&*
64 - - inport(Bass + ~ dely aue'
65-
66 -/*Print Val usea
6 7-for I i -6., bit -RD_7110 A1Ih8BTPIJLI; i 3-- 0; J--)

8: ')Print status values.*/
91 c-rint( BtatReg~il j
92 f
93 -taxtoolor( LIOIWOUAY)
94 textback roun. d LCK

96 cprlntflyC y 7e'~rt~h)

o U~0lor MLACK
101 cG0rinbtf(V T=ue (zkn'3;
102-3

104-
105 -/'Rasewt to normal colors.*/
106 -texctcolor( wIQIIFm Y )
107 -textbook toosd( BULMK
100

lPage:
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0~e A:\ZO\0.OLD
Date: 7/10/92 L Mi : J 3 \I 19.2
size: 15505 ,ast Modified: Tue Jun 30 16.Z9:34 1992

110 - /I-how value of status bits in status register./
111 - eprintf("Btatusl Bit Values - Oxx\r\n', j a 0x3);
112 -
113 -114 - /s. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
115/- Routines GetfBezlo() --- Get a hexadecimal number.
116
117 i *Rsturnzaturam an integer number.

119 -

120 -static
121 unie longoetamoc(Intlimit)
1 2 2 , 4
123 - reg .strinti;
124 re:isterntci
125 -aut Unitne longretj

12 .-atoobarlf [9)
127 -
12: - /*Get characters from the keyboard.*/
1 2 9 - (r I "i 0 ; O

131 -).Goet bhx aharacters.e/
132 - do
133 (
134 a -etchfl:
135 c- tcolmer c
136 if (I (c >- 'a' &% " If,) &G
137 1 (c >- '0' &G c 4- '9') A6
136 c I- '\b' && c I- "\r')
13? putch('\x07' );

141 whi (c >- a & c If9) A&

142 c- a-\b' && a I" '\r');
143 -
144 - /*Break out on carriage return.*/
145 -If (0a-
146 -bek
147 -
146 - /*Caracter.*/
149 - switch ( a
150 - 4
15 6ce a \bs
1515 if al • 0)

1563

157 -reaks156- 4efault a
159 if(1 ( limit)
160 -
161 f i+] - ya162-afLII - '\af "t"

163 putah Cc
164 }
165 -bhrek;
166
167166 -

169 - /*Return number.*/
170 - escanfC Uf. %lx", &rot);
171 r*turn( rt )r
172- )173-174 - -------------- ---------

175 outino:PrtVal() -- Print an integer value in hexadecimal, decimal
176 land binary.
177
178 J InputsVmal- Value to print.
179 ------------------------------------------------ -180 -

11H static
162 - voIdPlrtVa2(UrIVal)1 1163 -4
14 r rsegltrintil
I8 "- I t;166 - mutobar•t[20]g
107 -
L16 - strJl) - 0
19 fog -16. b - 1, i ,- o1 1--)190 if (1+1) % 5 ,, 0)
191 atr , , '
192 else193 -ri 4 vl&bt
1941: If (Va a bit)
195 = I[IJ - '"
196 sels
197 - tr•(] - '0';
196 bit 'C. 1;
199- )
200-
201 - Op ntf"(•xO4x %Su SO', Val, Val, 8tr)j
202 )
203 -204 - / . . . . . . . . . . . . . . . .
205 It'teZUte( - ntilieln th display.
206
207 | InputasPort- Current port value for reads and writee.
209 ---------- ------------------------
209 -
210 - static
211 - voidalntDsp(UUTPort)
212 (
213 - Print current base number.e/
214 - g (1, 14)0

216 -textclor( LICHe M U
217 -taztbackgonCLNUY)

210 aputa( t1=ase Value' 0Z)i
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Date: 7/10/92 File: B:\10\T0 OLD
size: 15505 Lost Modified: Tue Jun 30 16:19:34 1992

219 - t•xteolor( LIGBTGRAY )
220 taxtbeckground( BLACK
22. -pute •
222 PrtVal( Sme );223-
224 - !'*Print current port number.*/
225 - gotoxy( 1, 15);
226 clreol);
227 textcolor( LICHl MUE
228 -textbackground( LIGBTGRAY )
229 -put( tPo- Value-
230 textcolar( LI9TGLRAY231 trextbackground( BLACK i;

233 -P9,tV"'i( r 26;6234 ta

237236t- ot PLl) :-hmok file type -nd posmibl- aQunt length

238-
239 - tnputeslism -oilenate for file to theok
240 -241- Outputsgs~tza- Pointer to UIIIT to storeo length in

246 -tatic
247 itChokl~ile( char *Filename, UZiT *Size
248 - 4 nF ,I0;

250 -ite;
251 - unsigned long nlbbl-e;
252 -
253 - /!opfn file 0/
254 -n?, - fopen( Filename, "rt=);
255 if (Z1nlfle)
256 -
257 return( INVALID );
258 )
259 -
260 - /*find first non-white character /
261 - while ( imspace(c - getcC(InFile))
262 -
263 -
264 - /*chaec for 8 format 0/
265 it (. '= 'a')
265 - (
267- fcloIe(nles)t
268 - *eturn( S.F.UORM )j
269 -
270 -
271 - /*otherwise box format, count nibbles '/
27 Wal - 0;273 -while a o - 307274 - I
275 -if• ( zdigit(c)i
276 nIbbleGO+*
277 a - getoaintile);
278 - )
279 -
210 - /*compute soum in words (rounding up) and return format '
281 close(InFile);
282 Size - (nibbles + 3) >> 2;
283 return( FFOBMA• );
284 -
285-

289
259- Inputs:Start- Start address

293 -
294 - static
296

297 ;- ý F Outfiler
298 - UINT Count;
299 - UINT Val;
300 -
301 - /nopn output film S/
302 Outile - topen(Fillname, 'w );
303 if ( Outfile -, BULL
304 -

305 1 otozyCl, 23);
306 -1reoltlz
307 cprintf('Fil open failed \xO7");
308 - eeep(3)l
309 return;
310 - )
311 -
312 - /*send transfer command to VPO '
313 - outport(Port, 0zOO02);314 -outpOrt Port, Size):315 - outport(Port, (t Strt);

316 -n atrtPart, (int(Start t 16317 outport ( or1Ozl

318 -319 - /_*upload file '/
320 for (Count 0; Count - Size; Count+*)321 -4

322 - walt until read fifo not empty '/
323 -while ( 1( inport(Daee + 2) 1 7 ..IFO.LMJPT)
324 -
325 -
326 - Woret word and eand to file 0/
327 -V - •nport(Port);
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Dates 7/10/22 Files U: \IO\1O.OLD
size: 15505 Last Nodified: Tue Jun 30 16:1934 1992

3268- frintf(Outfile, %04x*, Val)j
329-il ( (Count A Oxt) -- Oxf)
330 -utc( \n', Outfil.);

332 gutc( "\n'. Outfile);
333 c lose(Ona file))334 - )
335
336-I - - - - -- ----------------------------------- - --
337 -i RoutinetOetwor4() --- reads hex words from input ftile
338 pads end d rffe•netly than s'anf for odd I of bytes339 -I

340 - Inputas Xnfile- Input file pointer
341
342 - Returns:integer value read
343 -------------------------------------------------------------------------------- /
344 -
345 - tatic
346 - UINetWord( 7ILZ lInfile
347
348 a(ut UIFTv1;
349 - autointo;
350 -ttiecha Urf[51 - -0000;
351 - autaointnibble;
352 -
353 /*read 4 hex digits '/
354 for (nibble - 0; nibble < 4; nibble++)
355 -
356 - I'gnore embedded spaces and newlines '/
357 while ( isapaco(C - getc(Infile))
356 -
359 -
360 - /*mto hex dlltf, zero pad at O0 /
381 if (isxdigit(o )
362 4
363i luf ibblej
364 )
365 else if (c - BOP)
366 - 4
367 - uf(nibble) 1 '0';
368
369 - ls
370 - 4
3"71 gg

t
nx 1, 23);372 gTrel()

373 - rlin Unexct character Its: in file \x071, c);
374 al 12)
375 uflnibbie] - '0';
376
377 -
378 -
379 - /*onvert to integer /
380 secant(Buf, %X, wVal);
381 roturn(Val) ;382 - )
363
384 - /P . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .385 / - utineaenllok() --- Transfor block from PC file to VPH menory
386
387 a Inpu: Infile- Input film pointer
388 /ItaMt- Start address
389 -Size- Number of words to transfer
390 -------------------------------------------------------------------------------./
391 -392 - Static
393 - voidSeudSlook( WIt& *OInf4le, unsigned long Start, UXUT size
394 : 4395 - 01ST/L:•

396 -
397 - /"send transfer conand to VWI 0/
390 - outport(Port, Ox0001);
399 - Outport (Port;, i81e) ;
400 -Ootpor(Port, (ntn) • Start';
401 outport(Port, fint) (Btan i 16));
402 outport" Por, 0x0000);
403 -
404 -/*handle expected number of words 0
405 -while (Size--)
406 - (
407 - rs

m
ad a word from file */

406 - Val G oetWord(Infile);
409 -
410 - /*wait until write fifo not full 1
411 - while ( 1( inport(Rase + 2) & WR3F1POP0_7UX.)
412 -
413 -
414 - /*write word 5/
415 - outport(Port, Val);
416
417 -

416-418
420 - I ...................--... ransfer.PC.file.to.....memory

421
422 i Inputs: Filename- Name of source file
423 I Pormt- Input file fozrst
424 /tart- start address
425 -Slze- Number of words to transfer
426------------------------------------------- ---------..----- --------
427 -
426 - tic
429 - void Download( char tPolnams, mnt Yormat, unsigned long start, UINT Size)
430
431 ILE* nfilO;
432 - IntDone;
433 - into;
434 -
435- " o/* n input file "1
436- Infile - opon(Filoname, "rt");

Pages 4



Date: V/10/92 File: 5:110.0W
BTze: 15505 Last modfiied: Tue Jun 30 _6:_9:34_1992

7 - If ( Infile - NULL
438 -{
439 - gotZ( 1, 23);
440
441 4 ~it~'ile open failed \xV7);
442 - : eep(3 ;
443 return;
444 - 1445-
446 /*heck format and handle each *
447 - if Y Pormat -- =XFOMT
448 f
449 edf3look( Infile, Btart, Size
450 Lee
451 }lse
452 -
453 - S format - handle each record 0/
454 - Done
455 while (8" )
456 - (
457 )-find next 18' and let record type A/
458 while I to - getc(In lie)) I- 'S A& c I- 2OF)
459 -
460 - -- getc(Intile);
461 -
462 - /*handle each type A/
463 - if (c -- 13')
46t S*get record length and compute data worda s

466 fscanffInfile, %2x", &Size);
467 Size - (Size 3> 1) - 2;468 -

469 - /*got start address *
470 fmcanf(Infile, "%8lx, &ltart);471 -

472 - /*transfer data field */
473 - Sendlock( Infile, Start, Size );
474 - )
475 elso if (c - '71)
476-

478 - )
479 alsoe If (c t oy)
480 - 448 - 2.x(, 23)1
482 -ireclfl;
483 - c rintf(Mimsing end-of-file record \x07');
484 - s eep(3)j
485- Done 1;
486
487 else488- (
489 - goo(1, 23);
490 - clreol(l
491 -s ri~ntfLCunfexpeted racord type %c in file \x07', c);
492 - eleep(3);
493 -Done- 1;
494-)
495496

497 -close(Infile);498 - )499 

.

500-/--------------------------------------------------------------------------
S01 - jRuiemain() --- Entry point and main routine for program.
502 - .--------------------- ------------------------------------------------------
503 -
504 - voidMain(intargc,
505 -cbarO'argv)
506 -
507 rteginterixIval;
508 registerintc;
509 uto unsined longatart;
510 - autoIN ize;
511 autochar uffer(AM BIZ+2] - NA( _8IZE );
512 autcochar*Filenamm;
513 - autointormt;514 -

515 - /*eGt comnd line paremsters.*/516 - if (arga 1)517 {

518 )*Got 1/0 board baes address.*/
519 - it (ssCanf(argv1, "W, &Base) 1- 1)
520 -
521 fprintf(stderr, "Error, ramoter one must be a
522 1hedeciml 1/0 space rdress.\n=);
523 -exit( 2 );
524 - I
525 -
526 - ort - asmej
527 -
528 - /*Aet up to read comand.*/529 - ciser();
!530 -~~ j gOtoxy~ 22);
531 cprint (COmaMds: (B)aae, (P)Ort, (R)ead, (W)rIte, (U)pload, (D)ownload,
532 - Q)uit=);
533 -
534 - /6Prlnt aurrent port number.*/
535 InitDLp( Port );
536 -537 - /'Ilnlilzethe sho rsen.'/
538 - for ( ; ; )

539 
jar

540 /'Bhow the status.*/
541 -Ibowtat( same 3;
542 -
'543 -/*Get commuA.*/
544 - 1, 23);
545 Si•.o H)
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Date: 7110/92LotMdfe:TsJn3I_9419
Bile: 15505 

... t ...... ed .u .u 30 . I........

546 -cprIatf(lCoompid? 1);

547 i1 ((Cc o) -' Ia-'
548 -break;

549 /*- ct C. d*
550 W 'ac~ecinafd'
551 - wthCtoloverC c
552-

554 0 baseadd~ress number.*/
555 gotOV 1. 23)1

557 * print Dis L a ame, Port Address

559 /*,Got hex number.*/
560 Basse. - atRaexfl( 3 )
561-
562 /*Print current POrt Dumb"r'

563 9OtIY(1, 14)3
564 01 1 cle 1C

565 -teottco or( LIOBTBLU
566 -textbaech~ould4 tLIBTGBAf )
567 *cputat( "Dame aluel
568 toxtcolort LI0DO&
569 - gxtbackgrOafldC UL ;
570 - putal. t )
571 -PrtVC Sm
572 -breaki
573 - cae '574 P~e Ir number.*/

'575 1" 1vl, 
23 );

57G - csoip
577 - priBS 11sntr, Port Number
576
579 /*Get hex number. '1
580 -port - GotslelOC 3 )

582 /*Print current port number.*/
563- oto~Y1 15)
184 g ~eO~
585 textcO orn 1OW82SLU4R 7
5a6 -t*ZtbttnkgoundýaIue y
587 -cputm( ' Ort lo
sas textcolort LIGHT M y
589 -textbackgrOUfldC BLACM )

592 -breaki
593 r cen'
594 ,j'Uadvlue from portt"/
595 -Val - inportt Port )
59
597 /- Print currant part Dumbet."'
598 ooY0.1)
599 - alrey U)";600 -tejxto orC LIOZU~1
601 -teztbeck=U11d4aiue.,
602 aputa' * aVlu
603 -textocolr( LIOVGHTMbV)

04-textbeciggroufld( BLACX)I
605 - ~taiV1
806-PO 1Vxi
607 -break;.

609 - /'Ot prt .. uaer.'
610 - ~~ 11ctyl 23))

611 .9,1it? JInter Value to Write
613-
614, -Poet bax numaber.*/
615s Val - QetseI"iO( 4 );
616 -osstport(POrt, Va1);
6 17
618 -/*Print current port number. 'I
619 - ooyl*16)3
620 a cirollW (
621 -taXtCoOt Or ?5UK)
622 -temtbackqrul~~

623-cat ('rite sle

624 - atolor( LI RZRAY
625 -taatbaohgroundC SLAMI5

626 -
*ptm 1;

621 - pr~t~al Cval
620 - breaki
629 -ame u:
630 *Go't start address.$/I
631 gotc(.2)
632 23);1~)

633 *print (Inter start Address I,
634
835 - Poet box number.*/
636 s tart - GstseZMOC 8 ,
637-
638 /tooat mise In words.*/
639 - ooz2, 23),
640- citelL
641 - ptiizaC~taX swbee at words 3Po)
442 -
443 - /*Got hex nummer.'/
644 - eSeS - Getseupot 4 )1

647 - atniy(, 23)1
644 - IMoj
649 -CI orint ntar "Setiflatial PileASaMI 2
650 1 tenante - cgete(Duf fer)1

652 -/'PerfozU upload operation '
653 - IploadC Btart, SiXe, ManamaS~);
654 -break;



Piot2:1010 \O\0-OM•

Date: 7/10/92 
Last Kodified: Tue 3un 30 16: 9:34 1992

size: 15505 .ie ... .0......

6 55 - au d'.656 /Got filonumo. ,/

657 - gotoxy( 1, 23);658 -crecl()
659 cprintfE("Rnter source Filename >
660 P ilenam - coetst(ufter);
I661-
662 - /*1heck format count words if hex format */
663 - ormat - Ch.@ik•il( Filonama, A&Ize );

665 - /*if hox fort. r t start address *1
666 if (Format -)
667
668 -Got start address./
669 - gotc(1, 23)1
671 a cpr&nf( Enter start Address >)

672 8- Star - GeotBxxo( a );
673 - )
674 -
675 - /*Perform download operation 'I
676 Download( Filename, Foreat, Start, Size );
677 - bIrea;
678679
679-680 -

601 - alrecro);
682- )

.
I
I

Fas



Date: 7/10/92 File: IOB. DOC
8±a.s 3940 Last Modified: Tue Jun 30 16:18:30 1992

I - PC 1/O Board Driver

3 -
4 - Installation:5-
6 To install the driver, an installable device driver entry must be placed

i in the config.eys file. The entry looks like:

9 Deviaec•s\iob.biln 340 a 110-
11 - where 'Device-' tells MS-DOS that what followe is the file name of an
12 installable device driver, 'c: \ob.bin' is the disk, directory and file nam
13 - of the device driver file, '340' is the base address of the 170 ports used by
14 the PC I/O board, 'a' is the interrupt number used by the board interrupt.s
15 are not currently implemented) and i' in the device unit.
16 -
17 - At boot time, the device driver will diepl.ay a header containing the name
18 of the driver soma information about the device driver configuration (most
19 of it taken straight off the device driver co mand liane), and then print
20 a prompt and wait for the User to press any key.21-

22 - Shown below is the exact config.eys file that -1* used to install the 1/O
23 board drivers when I was testing them.
24 -
25 - filen-40
26 - buffers-10
27 - break-on
28 -laatdrive-z
29 -Devioo-ct\hi nom aye
30 Dovioec:\cem386. yo 2000
31 devicoe-cswindowat••artdrv.syu 2048 1024
32 device-c&\windows\ramdrive.sya 1024 /e
33 Dmvnce c8•dnadrIveK:tation..sys unite-4
34 Devlce-c:,\dnadrive% pool.aya
35 Devic-c,-ob.hin 340 a 1
36 -ev .o-ea:\lobb.bin 360 b 2
37 neAeqll-c\eto\init.exe -R as
38 -
39 - Uses
40-
41 - This Is a Ri NO-Doe driver, which mean. that you can use it just like
42 any other character device. For example, to aend a file to the VPW, type
43 -
44 - copy vphfile.dat iobl
45 -
46 - and NI-DO8 will send the file (if it is an even number of bytea) to the
47 VPaB.
48-
49 - It is important to remember that the device driver trys to mimic a
50 character device driver, but the PC I/ interface board ic a word device.
51 This means that if you send q * w + r (where w is 2, r is zero or one)
52 bytes to the device only q a bytes will be received at the other end.
53 The device driver will report that it cent all q * w + r bytes, but the
54 last byte will be waiting in a buffer in the device driver, and will not
55 actually be aent until at least one more byte is written to the device
56 driver to make up a full word.
57 -
58 - Since the driver in a real MS-DOS device driver, it can be accessed
59 uvut like any other file or device from any programming language that
60 -epports file 1/O.
61 -
62 - A list of the device driver functions that this device supports Jai
63 -
64 - 0-Initialization. This function is WNVRR accessed by the user.
65 - 4-Read. Peed data from the device.
i6 - -nput Statue. Determine it there is any data to read.
67 7-Input Flush. Throws away any data In the input buffer.
68 -tfWrite. Write data to the device.
69 - 10-Output Status. Determines whether the output buffer is empty.
70 16-Output Until Busy. Output until device output buffers are full.
71 - Thic is eynonymous with the Write function for this device.
72 19-Genert 10 Control. Bend coemands to the device. The device
73 - currently only supports one command; reset.
74 -
75 - Debugging:
76-
77 - The PC I/O Board driver is written in pure aseembly language, and In
78 NOT debulable by any of 8TC*s inhouse software debugmerc. There are two
79 =way tolrack down bugs; code Inspection and documen ation review, and
80 checkpoint dumps. The kirst is the recomended way, the second is useful
81 when the programer becomes to lazy or frustrated to use the first.
82 -
83 - A check point dump consists of allocating a big enough buffer in
84 meaory to store the relevant information, and Inserting code into the
85 - part of the driver to debug to write the information into the buffer.
86 rTe buffera can be read or written froe the application level, but NOT
87 from within MS-DOS or the device driver (MS-DOS in not reentrant and there
H8 is only OE request packet for all device driver. in the eyetem. Which
89 means you can aet a breakpoint in the device driver code, but when the break
90 occurs the data In the request packet will be for the lost I/O call made
91 by the debugger, NOT your device driver).
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. ..- . ... .... ... .. .... . .... .42 M odulegStructure and Constant definition&.

6-
7 1 /0 board status register bits.
8 &- h TAT Oeq0OOlh
9 S- BRTAT-lequOO02h
10 R-PRT SaaIIOO04h
11 - SF:W1 equO~OSh
13 -SVI13a8EMPT~equOO20h

14 000
15 O-R MpaTyequoosob
16 8- R~DW J1= u010h
17iE~ SRXN PTYeqU0200h

to a 81FU~eUO40Oh
20 L 1/0 board control register bite.

22 CR-CISZT RharIsquO200h
23 ý-cR'RESTeuOO lOb
24 - oIZM Ijzlmsaquo800b
25-
26 - 1/0 board interrupt mask value.
27 IR RD8 FULLequOlOOb
28 IR-RD-VPT~equOO8Oh
29 R- WR-FULLequOOlOh
30 IR-WRIFMye~u0
31 IRBTX oequ 001
32 - ZFITArIlequQOO2h
33-

34 1itatus for request header structures.
36 -RB-BUquOqu

39 Z rror codes.
40 - XIWRITE PR =ECT VIOLM!IO~equOOb
41 - N-UN~KXW0N UW6~su01h
42 - XRR-DRIVEIT YMREDequ02h
43 -ERUIINXbOUN cIMO4AfDequ03h
44 - ERR-CUC R1RR0Rqu04h
45 -ERK-INCORRECT LRJGT~equ05h
46 - RK-SEEX ERRO~equO~h
47 -EBII-JIII0EM NEDMI u07h
48 - EIIRBECTOR NOT VO NauOSh
49 -EIRRPRIWME OUT OF PaPERequogh
50 - RR-WTItE FULTiqu~)ah
51 - RRREAD FAUL=euObh
52 -ZUrOE"UnA FA, ~euOob

53 =R:zuVALXD~z~cD QZequ~fb
55 -DVe HDlatruc
56 -dhLTnkdd?' Pointer to next driver.
57 -dhAttribdwu7; Driver attributes..
58 -dh~trataoVdw?,- Strategy routine offset.

dhlndterru- dO 'I ntermut, routine of fset.

62 -výR~as

63 -3QPXTstruo

64 - hLntb Lenth of record in bytes.
65 -rh nItdb?; hot used.

66 - hFunctiondb?; Function number, always zero.
67 -rhatatusdv?i Returns the status.

66 - hleevdds up( Spere space.
69 la 330reud
71 - ZkTstruc
72 -IrLengthdb?; Length of record in bytes.
73 -IrUnitdb?; Noat used.
74 -irpunctiondb?* Function number, always zero.
75 -iratatuadw?- fieturns the status.
76 -IrllsserveddLB dup (7; arsae
77 -irUnitodb?; Number 01 unsteefor belock device.
78 -irgadAddroesdd?; Input:2nd of driver.
79 - OutputtNew end of'driver.
SO0 lrpar--id~r---sd?; Pointer to config.sys device-

Si - c~and line.
621- ir~rivefluuberdb?; First drive number for black device.
83 -irmesesssgepladw?; Irrar message flag.
64 -INITende
955
96-ICT1 REUK truc
87 -irwr~egbb Length of record in bytes.
88 - rwr nitb?; kot used.
09 *irwr unctio db?- Function number.
90 -irwrflttuedw?; fitturne the statue.
91 -irwrflemerv dup s; Spare opaens
92 -irvrDatadb?* Not Usd
93 -izwrfluffrd?; Pointer to data buffer.
94 -irwrS veadw7, Size of read or write.

97 C - 0L30Jsatruc
m6- ienatlb?j Length of record in byte.a

I9 *UaiwA?; not used.
100 - Functiondb7; Function number.
201 - Istatuedw?; Returns the status.
102 - LseervedldbO dup (?); SA re space.
103 - gCategorydb? Caegory ofadevice driver.
104 -gi~inorCodedb Minor code.
105 - ifleserved2dd?; par spce.
106s gilOCTLDatedd?; none t OT data structure.
107 -x0eTr"WougNSans

Pagel
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2 PlModlP I/0 board driwer.
3-
4 - Authortiohn Stevens

6-
7 -Includeiob.ine

9 -texctaegment byte public 'CODE'
10 - imumeonsjtaxt, da .text, e tetxt
11
12 - uirst thinan first the device driver header structure.
13 -DcBdrDV`C D~Offfkfiftf, Ocl~Ohb Strategy, interrupt, 'IOB?
14-

17I DgPtrdwO
1: Dbgifrdw25dup(?)
20 g ;lobal variables.
21 ktP~dd? ;Pointer to requeat packet.

22 ddPointer to command line.
23 -ICiaaedw?;iame 1/0 port address.
24 -IntVec~odw?*Interrupt vector number.
25 -CR~ntncdw?;bontrol royister interrupt number.
276 -Rd~lagdbs Plea to 4nd cats that buffer has data.
27 Rdiffrdb?lRead buffer for non-eoven read sizes.
28 - Wrtllagdb? ;Fla to indicate that buffer has date.
29 Wrt~fffrb?;=- buf fer for non-even write sizes.
30 -Dnpatrdb32dup (?)
31-

33 nforkationpac reck I/O Board Driver Vera. 1.0', 0db, Oeb, 'S'
34 -rramd Namev 2
35 -Statldb' I/Oie port address $
36 -stai2db' Interrupt vector :,5
37 -Ahakddrdb' Driver address 5
35 Pressen 'Preen aY key to continue .31
39 CrLfdb d, Da, '$
40-
41 s ro tring@.
42 - ai'O'Beedb'tad value for 1/O bane address.' 0db, 0b '$'
43 B SdCudLinedb'Uad command line structure.' 0dbOa Oa'h, ~'
44 BoUdlntmodb'Bad interrupt number.', Odh, 0mb +~
45-S rtaxlrrdb'Syntax Error- Iob.bin <X0Dane)l kInterrupt Vector)
47- ceioMubr-,OdDb S
467 (eieNme' dQb 5
46t -------o- - - -- - - - - -

49 ---- ;Sv prtione --- Save the operations requented In a debug buffer.
50 ------------------- ----------

52 -procnebug53-
54 -;Save registers used.

56 P-punbhex
57-
So 18;av command.
so-

61 -;Check for overflow.
62 -movhx, cs:DbgPt~r
63 -cmpbu, 200h
64 -jgeobgOvr~low

65-
56 - Get pointer to debug buffer.
67 - eahx; aonDbgBfr
S8 a ddbx a cnDbgptr

69 -
70? ;Save value of command word.
71 - movcn:(&bxhr a
73

74 I~turn from debug routine.
76 -popax
77- ob
78 r
79-
SO endpDebug

62 Ex*ecuJte comands.
63 - nterrupt:
64 -pushex

65a pushbb86 -punarc

66 - push"~
90 -puebdi

91 punbee
92
93 - :atrieve the address of the requeat header packet.
94 - mabe, as
95 -movde, beg
96 -leedi , ReqPkt

97 -
96 ;Gjet function numiber.
99 movbl, esaidi3.zh~unction

100 - xrbb, bb
101-
102 - Thim In a legal function numer.
103 aaollflebug
104 - hbeb, 1
105 - upwori p~t IFnnoTbl + beJ
106 -
107 F unefthdwlnItialize;Punatiae #00.
106 -dwhlockDvajFunctloo :01.
109 dw~lookDvo;Punction #02.
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110 - dwlOCtlRead;Functlon 803.
111 - dwRsad;Function $04.
112 - dwalocilvc;tunction #05.
113 - dwlnputStatua8Function #06.114 - lnulhl~hFuntion #07.
115 FdwIr~to unction #08.its d&W-Vrrttoeve;F-nction #09._

17 dwO ututa tus; unction §04.
dwalokDv•, unotIon #Ob.18-dw:OCtIrlte )uo t~on 00

1to Pcnet on 0O0 .
120 vfunction #0d.

122 dwfllockDvc; unction Oft.
123 dwblockDvc;PFunction #10.
124 dwBlockDvc; Function oil.
125 - -dead da frFunction d12t126 &wMIGMlOCll; Function 13.
127 &wl- kDvc; unct on 114.128 dwalockDvc;punctlon is.
129 +wMlock~vc; Function |16.
130 d&1vBqockdvC; Function 117.
131 dv~loolk~vc; Function #18.

132 dwZOCtlQee y;:Functon #19.133-

136 - --- .... .. . . ... ... .... ... .... ... .... ... .... ... .... ... .... ... ...

237 -

138 - Wead s

140 -
141 - 3rror chock for possible seo" byte reads..
142 movc, e.:di.irwrvlytos
143 - ampex, 0144 -J lnzonlereoadt
144
146 -
147 100t pointer to reed buffer, zeo" out bytes read counter.
148:
1491 leoi,•.as dijAi.zrlufZer
150 -zorsi, al
151 -
152 - ;If there In. spare byt, to read, got It.
1S3 -0PlM I&G, 0
154 -
155 -
156 - ;Clear flag.
157 - vudlag, 0158 -

159 ;Get byte and stOte in read buffer.
160 namval, Rdflffr
161 moves:1•t), al
162 n cdi
163 maui
164 -
165 -
166 - =egmine if there are any complete words to read.
167
168 - movlx, 3x
169 - brx, 1
170 JexaZZednyte
171 -
172 - D~ad the proper number of words.
173 maw", IQ""
174 RedWords
175 It t thRe ]310 is empty, reed Is complete.
16 - edddi,

177 x
178 - t•ete, 0b0h
179 - zADOo1eo -

1:1 - rRead word.
182 - subdl, 2
183 Lenzx, d3c184 -

185 ;SUave word.
186 -oves:(dIl, ax
187 - dddi, 2
188 addal, 2189 -

190 - ;Check to a" If enough words have been read.
191 - ubbl, 2
192 - loopaeadtords
194 -194 *I;f there Is a byt left to rolad, do so.
195 , keedlyte:
196 teootb, 1
197 - J•aCnse
198 -
199 - Meck to Nee if PAed Fifo Is empty.
200 - wovdx, IOBaae
201 &GdddX, 2
202 -nax, dx
203 -teeter, GGOb
204 -jandooms
205
206 - jPsed the Wod. save bytee.
207 sawubd, 2
208 -max, dx
209 -moeseIdl), &I
210 Incei
211 -Ined
212 - movfldlffr, ah
213 ovafilleg, 1
215 - Calculate and eave the nmumer of bytes reed.
216 RdDoeot
217 - leei, Reglkt
218 movee s[di .izwrlytoe, em
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219 - 3up~eturnM.
221: -- ------ --- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

222 - juto --- write data to a device.
223 - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
224-
225 -Write:
226 -IOCtlWrite:
227-
228 ;Gjet write count and error check for possible zero length writes..
229 - ovoz, assidi).izwrflytoe
230 - cupx, 0
231 -jnolrr

232- petra
233-
234 ;Geat pointer to write buffer, save write buffer size and zero out byte
235 - write count.
236 - E~onlrorts
237 -leadi, ess(diI.irwrluffer
238 - zrail si
239-
240 1 ;I there a spare byte to write?242 cugp~rtFlag, 0

243-
244 -;Check to make sure that the Write F170 is not full.
245 - ovdx, Mae".
246 -adddX, 2
247 Ineaz, dx
24 - tostax, Ol0h
249 JzWrtoone
250-
251 ;Zjero out flag.
252 - uovWrtjlla, a
253-
254 -;Build word to write.
255 - mval, Wrtlffr
256 - vah, 60m [d1)
2 57 - mcdi
250 -Incos

260-
2;wgrite word to buffer.I suhdxc, 2

264

26 M wite words to Write FIFO It there are any to write.
266 - orites
267 - mobet, CK
260 - hrax, 1
262 - Icxzwriteflyte
270-
271 ;Loop to write words.
272 - .vdk, losses
273 -WrtWcrds:
274 -;Check for Write FIFO being full.
275 -adddx, 2
276 - max. dx
277 -oteatx, oiab
270 - z~rt~oem
279
280 ;Goat word to write.

202- adddi,
283 -addal, 2
224: subbe, 2
286 ;Wrvite word.
287 - ubdix, 2
21 8 outdx, ass
290 ; Any more word. to write?

292 -
293 - Check for a byte left to write.
294 -Write~yte:
295 -teetbx, 1
296 -JzWrtflome
297-
290 vebt and set flag.
299-o2 rla 1
300- oa eefl
301 INow~lf,.
302 - mcdi
303- na
304-
305 -Ilave number of byte. written.
306 -Wrtflones
307 -leedi,' RPt
300 - ovee:(d ".kirwraytes, @I
309-
310 - 18ove the write paraemters in the debug buffer.
312 - ushow
313 - bmda
314 = uaa
315 b p05)6
316 -~o

317 - xorch, oh
310 movol, aest(di . irvriength
319-
32 ? ldesi, aoetlqPkt
321 pushes
322- oe
323 - edWrtlarame
324 -repmoveb

325-
326- od327- aa
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328 - popds
329 - popes
330 - polX
331 -
332 - jupRaetur-
333 -
334 - ----------------------------------------------------------------------------
335 - tlnrtatatua --- Determine whether there are any characters to read or
336 -

339 - Inputfltatuss
340 -
341 - Chock to .e if there i. a saved read byte.
342 -qcplda 0
343 -jneompty
344 -
345 -;Get the statue at the read FIFO.
346 -movdxs, 106ae
347 - ddft, 2
348 - mas, dx

351-
352 -The reed VIVO iS empty, return busy.
353 ty

I5 - oral, a355 1
356 moveasdii.rhltatue, ax357 JmpVn-ontarrupt

356 -359 -The read y1y7 is not empty, return that there Is a character in it.

361 - movahRS, UI 0
362 zoral, &IW
363 -moveal [di) .rhfltatus, ax
364 -jmpndlanterrupt
365-3665 - ------------ --------------------------------- - --------------------

367 ;InputFlusb --- Input flush.
368 - ----------------------- ------------------------------------------------------
369 -
370 - Inputlaubth
371 -
372 - lag to no saved reed character.

373 dleg, 0
375 - ;Read words from the read P1ro until there are no nore.
376 -movdx, 1o0a"
37 InFlushLps378 adddx, 2

379 max, dx
380
382 -

384 - ax, dx
385 ppaFluenp
386 -
387 - [Done with flueb.
388 - nlusbDones
389 - jaspatoru
390 -
391 - --------------------------------- -392 ;Outputotatus --- Determine whether all Characters have behn read or not.393 - I ...............................................................................

394 -

395 - Outputltatusa
396 -
397 - Check to ses If there is a saved write byte.
39 - cmP=rtlag, 0
399 -
400 -

401 ;Get the status of the write FIFO.
402 - ovdx, l0Ofls
403 adddx, 2
404 - max, dx
405 -testax, 08h
406 - inatzotapty
407 -
408 ;Yb read FIF0 is empty, return busy.
409 ty:
410 moran, ]UsN 3y
411 -oral, a-
412 doves. [dil.rhatatus, ax
413 juggd ntrrupt
414 -
415 - jbe read r110 is not empty, return that there is a character in it.
416 Wuoataptyx
417
410
419 movos srdit * rhatatue, as
420 - Uln4eninupt
421 

-

422 - ------ ------- -------------------------- - ---------------423 - -o--sn-voC-o--ov- --- ---eet the device.424 - g- ,.--- . --. . .•- _. . -. .
42S -4268- opa te
427 Oesvao
420 jmp~mtuzuO6
429 -
430 -ISt Ish the base address of the board.
431 -md, tons"
432 adddx, 2
433 -
434 - iMseet the board.
435 - movax,3 8
424 OatdKx ax i
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437 -
430 ;Now met normal oerating value.439 WaX," Cp &WEýV UZ n
440 outdx, ax
441 -
442 -;CIMaarG ead nd write buffer flags..
443 -mov sola, 0
444 - mavWrtlag, 0
445 -
446 -Done.
447 - mag~turnOE
448 -

4495 - ------------------------------------------ ----
4501 Ulpeetdfnto.blw451 - ;-------------------------------------------------------------------------------
452 -
453 - WriteVers
4S4 - GenIOCtl,
455 -GetLogicals
456 -SetLo-iaals457 - 0ctl•Quezys
456 -
459

439 113agl or unsupported command.,60 •I•,C '•'• °'
461 - Ioval, URRJUNb1OWCOA1ND
462 -
463 - 1rror in aomand.
464 -Retur"lumk
465 - 161d1, :Rol Pkt
466 movah, RE n loOR
467 - ave:[1 diT.rh3tatus, ax
469 J-pind nterrupt469 -

470 - lCeand aoploted succesfully.
471 - Rturr=:
472 -leadi, cs:ReqPkt473 - movah, Ro ox
474 -orad;, a-
475 wavs: [di).rhatatus, ax
476 -
477 - Zndlnt.r'upts
479 - pop4e479 - popdet
460 - pOpal
481 - pdi
492 -popdx483

485 -

487 -
48 - ;Initialize the driver by saving the address of the request header
489 - cket.
490 - Utr4teQ:
491 aWr ptr cs:Roqlkt, he
492 1movword ptr c:-ReqPkt + 2, am
493 - rett
494 -
495 - ..........-. . - - - - - - - - -. . ..
496 ;Dump what Is below this point.497- -,497 ;;; ................. .... .......................... . .
496 - .ori'lers
499 -

5 0 2 - - -- - - - -- - - -- - - - -- - - - - - - - -- - --- -t e c e n- -- - - - - -
501 -;rnry--- Print the proper number of charac=ter. to the screen.
502 - . . . . . . . . . . . ..
503 -504 - IProolrilnt.azy

505 -
506 - Save ohbaroters.

509-

-1 Print ohargietars.
51 _r~yLpt

512 sow Na , eot [bxj
513 aovah 02h
514 int2l6
515 - incbx
516 - lOoplrtrryLp
517 -
51 - ;Retur from print loop.
S19 popdx520 -O

522 -

523 - eadprintary
524 -
525 -----------------------------------------------------------------------------
526 2]7- r•iug --- Print an error message to the screen.527 -

523 -I;x- Caotain& the offset of the error message to print.
529 - ------------------------------------ -------------- - ---------- -.-----
530 -
531 - proaPriatmeg
532 -
533 - ;Save 'egiaters to be see.
534 -PUah

535 -push&%
536 -
537 - ;Create pointer to string.
536 Umax, as
539 Nov"ax
540 -
541 - ;Call IM-DOS to display string.
542 -
$43 - itai16 9
544 -
545 - ;Meeto=* registers, return.
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546 - popar

547550 - endplrint~g
551 -
552 - -----------------------------------------------------------
553 -jkipwbite --- flp white space in the string.554 -

il555 Th 20 bit pointer on:[bx) paints to the string.
556- - ----------------------------------------------------557 -

556 - PrcfkIPhito
559 -
560 ;Sikip white space.

61-pushax

564 1 1

566 3c al,0g565 ehu=ipace
5678 09dltht~a
56g566:

570 ; gIs white space, Continue.
571 -Whtfpace:
572 T iob
573 - loopmkiaihitenpace
574 -
575 - kFound non-wbite space character, return.
576 -otwhtapaco:

577 -

580 - endpakipWhit.
581 -
582 - g-------------------------------------------------------------------------------583- ;Prtaex --- Print a hexadecimal number to the display.
584 -565 - The number to print is stared in ax.

586 - to .............................................................................567 -

586 - prortux
589 -
590 - ;Iave registers used.591 - puahox
592 - puahdx593 - Ipuahd
594 -

595 - ;lnitialise string.
596 movdi offset Depetr
597 -O~ -ov 4,1 0
596 - Rcod" ptr [di], '0'599 -nmoyht
600 -mcl " 'a

601 : t ptr (Idi, ,01

606 -inodlnc~te. ptr [di), '0'
603 -a"• ptr (dil, '0'
609 - owbyrte ptr [di],
608 icT t

609 - dd ptr[dii, 's'610
611 

-

612 - ;Print value to string.
613 4 or
614 - raxp:
61 current bhx character.616-ma1,c
627 anddi, 0th61?616 -

619- ;Check to sne If decimal (0-9) or higher (a-f).
620 1 Oah
621 - Deci
622 -
623 - ;Is higher (a-f), convert to character to display.
624 - subdl, Oah
625 adddl 'a'
626 )japlaxichar
627 -
626 -Is decimal, convert to character to display.
629 -lDecinasi
630 - adddl, "0'
631 -
6 32 - tore character.
633 -PNtChar
634 - mbytptr
635 de[d
636 -
637 at net character into lcveet nibble.

643 - shrax, 1
641 - shraxn I
642 -looplritlexLp
643-
644 ; Create pointer to string.I 645 - uodx,: oyfxt Depflr
646 -cllPr ntllag
647
646 ; metore registers and return.
649 popdi
650 -PU
651
652652 - e654 - endprtfex
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655 -

65H ;GetJE - Get a -exadecial nu ---er from a string.6568-
659 : ;The 20 bit pointer ea:[bx| points to the start of the hexadecimal number.
660- ;-------------------------------------- ----------------------------------------661 -

662 - pro••tEm
663 -
664 - ;Set up a loop counter.
665 pumbax
666 - xorax, ax
667 - move, 4
668 -
669 - GetDigitas
670 1 Iet for In 0-9.
671 movdl, ma (bu]
672 a dl '0'
673 S Zo.eoIrr
674 ampdl, '91
675 r
676 -

677 11mi decimal, convert.
673 s ubdi, '0,

6 79 - mphdd~oxDigit680 -

681 - pTeeat for in a-f.
68 N otDeC~rr:6832 c
61-Mdl 1a0

684 iose685: V

686 7 j
667 -
69886 ;Is lower ce hexadecimal, convert.
689 - ubdi, 'a'
690 -Addl Dab
691 -jmp~ddinezoigit692 -
693 LTeat for in A-F.
694 l ot"oCame:
695- ad A,A
696 -
697 -698 - j3tm
699 -
700 - ;I lower aaa bexadecimal, convert.
701 1ubdl, 'A'
702 adddl, Oab
703 -
704 - Add anotha ex digit.
705 6git
706 -Ahm-7,01%"707 - ass, 1
706 - I
.I0 a lax, I~'0-oral, d.1711 -

712 - Go around again.
713 -nLb
714 - loopoetfigits
715 -
716 - NotHex:
717 -no
718 e
719 -
720 - endpaetlies
721 -
722 - -------------------------------------- ----------- -.. . . .
723 4 Pause --- Wait for a key to be input before continuing on.724 - p-------------------------------------------------------------------------------.

725 -
726 - p'oaame
727 -
726 - ;Print prompt meemae.
729 - movdx, offset Preaciy
730 - callPriatmeg
731 -
732 ;Gpoet key from keyboard.
733 -movab, 12h
734 -it2
735 -
736 - ;Print new line and carriage return.
737 -ovdx, Offset CrLf"738 callPriotI9eg
739 -
740 - rat
741 -
742 - endplue
743 -
744 - ;-------------------------------------------------------------------------------
745 ;Initialize t driver and get parmtreI from the Config.nys
746 - pCOMMnI line.
747 - -..-... . . . .. . ...----------------------------------------------
748 -
749 -[Print driver info.
750 lnitialize:s
71 losta &pointer to the configsy. comad line.
753 MovwO- ptr CmdLine, bx
754 m- wovrd ptr CedLine * 2, am
755 -
7156 - ;uearb for end of line.
750 - movcx, .Oh7158 - Lndhnearoh
759 -no dl, byte.ptr as [bx)
760 -cmd o
761 jejdha~
762- baodl, Cab
783 -Je~hdindiine

Pages 7



Data: 7/10/92 Filet d• .Du
81se: 19580 Last modfie-d: Tu Jun 30 16:8:32 1992

764 - incbx
7:6 -pLng-dearoh
766 -
767 - ;If we got here, we could not find end of line.
788 ovx, offetr dCmdLi.ne
769 riovl, :[n
7 70 jndgnam
77 -

,4 706- j7f7 ng the re we are ateend ofne par ters, establdsh loint.
773 -allnndLrinst

774 -MC bae dre

775 word ptr ns-Cmgine"776 21 ,b

797 -

796 prme ogrIame name

"799 - ""

600- Chec, for legaliyo Os.ade.
601 - 1mpa, 3f
602 -jleroiae0e
603 1 eodx ofstDalh
60:4 callbrigntasm

705 
bndl-786 - l~klp~rngl&m781 o

7607 It weegot hearwetare whic is to comardwe linterrp.et~ ub

790 -

6107 cali•geax

711 - movdInitzeco, ax

712-
813 -;Sip thisiterrsptc anecgtr nuhefrs 10?aIftso, whcner tn the prope
7914 -bs acdtdlregstes ale

795

792

617 mcs11CBlntPo,

769 -

620 - usthis ie=nd aterr e, bc -. te • Ltrupt vector number.1?I o ovr otepoe

806 - forlnt le:
623 e pax1, 11

825 - mOVcsCR~tZ~toC, lOOC

126 -od, jm oetvffstlo I~

8627 -

802 - ;.s this internupt vector number 1.? If so, convert to the prope

629 -;control regster value.
30 - Ch~kipn ts2

631- ampe 12
863- jnedhklntls

633 -csos ntao, 0

634 - juopaetfvo

816 -
813 - 'ls this interrupt vector number 12? If so, ponvota to the psope a

a3 24 p xi d iver viKalude. talstin

6322 ChkZnt111

865- cpen,,15
816 - Ip ti-
474 -
405 - ;iS this interrupt vector number 15? If so, conver t to the proper r

826 -control register value.
864 -hkInt12:

824 twvas:OZnto, 1000h
261 - JetQf vcUo
283 - ls this Interrupt vector number 12? If sot, convet tmoro th popero"

029 ;exi; dregistr vlt adlnue. lzaLn
830 Ichokntl2:

341 12dofst adn:l

652 callPf.kin.tis

63- callfet~vex
635-

:3t -l~tl ;511 8interrupt vector number 12, Ifonvro t, printanerr€on1romsag n

65 t driver nawmeab initialheaderstruo

656 - leaxDvldrdmmegnt
647 - adnt015

856 - v•hx * 3j, lo30h
659 -
85680 - ulrIonGt drivder itls ae•.

661 -movdx, offset Sadirto662 - callPrintkog

453 jmal it

864 - rInt the descriptin fo the driver 15, unae.

665 - mvd, 'Offe r'm

66 registervalsu
867 -
660 - lrnt heRInver 30ae.

852 ca1•:1n•it

659 -

64-;Podlnythe.• driverlptnam in the header strutur.

I 670 - mevox, S

671 - movik, ce
673 - move, ,

:•i 
i6u -;Prini 

iheidescriptmion IIr 
the driverIInamI.

$65~~Pge modofetDva

eg 6

I6
60 ;rn h die as
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87 o~X DvC~dr.dhKAXesrUnits874 callPrintAry
875 -popes876
877 OiPrixnt carriage return, now line.
878 aodi offset CrLf
879 - allPrintftg
880-
88j 'Re the Z1flase address value.

183 -calllrionftl gts ta
884 - eva~x, ZOflase
885 -CallPrfe

886 - vdxi,of fmet CrLf
687 -callpritMeg

889 - Icoh the nterrupt vector value.
890 - nodx ff..met Stat2
891 - ~ , calrits
892 - ovax, IntVeCflo
893 calIP tex
894 .ovdx, of fset CrLf
895 -callprintlmsg

896-
897;Prlnt te aNb olute address of this driver.
898 .mod offstAhAddr

8900- callPrintneg
90-movax, ce

901 calilriflex
902 -movdi, :'
903 - ovah' 02h
904 -int2l6i
905 -leabx, cs:Dvcfldr
906 -movax, bx
907 -callPrt~ex

908 - ovdx, offset CrLf
909 - allprint~sg
910-
911 - ;Iixtialize the board. Begin by rweseting all registers..912 - a8, 'eas O0ase
913 - dddx, 2
914 -IVX -oa, RRUNT
9165 -outdi xf
916
917 - gow set Control register with interrupt number and interrupts turned
918 - gff.
919 - avax: CR NA82VhLUN
920 -outdxa
921-
922 - g uaaeeful Initialization, set proper values in packet, return.

923 - eadi, as:ReqPkt
924 -moves: (dii .irStatus, 100h
925 - moWOrd P r es:I di .irlndAddrees, offset EndDriver
9 26 - ovvord ptr es: [di]. irgndiddreus + 2, cas
927-

928 - cllPause
929 -JspJmndlnterrupt930-
931 - *rrortin initialization, set proper values in packet, return.
932 - adlnit.

933 lesdi, cs:ReqPkt
934 -moves: [dii .ir~tatus, 8100h

935 - ovword ptr so:j dii .rEndAddross, offset EndDriver
936 -movword ptr em:Id.! I.r~nd~ddress +2, as
937 -mwOvs:CdI].irMessagallag, 1
938
940? juplndlnterrupt
941
942 -textends
943-
944 a nd

a~~fla~~anFew 9ef n f f ~ f - b
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Bize 1890tast K4odif ted: Tue Jun 30 16:18:34 1992

2 - hoduls:PC 1/0 board driver.
3-
4 -;AuthorzJohn Stevens

6-
7 -includeiob.inc

9 .texteegnmat byte public 'CODE'
10 - jeumbece: -text, da _text,..:_ýtext
11-
12 -*First things first, the device driver header structure.
13 - bvcadrDVCRDRtofffffifffh, OaO4Ob, Strategy, interrupt, 'IOB? >
14-
15 a- lbal vaiaIne..
16 - aqktdd? Pinter to request packet.

*17 -Cdin ddjPointer to command line.
18 - !0J&aedw?; ass 1/0 port address.
19 - ntVecnodw?nte trrupt vector number.
20 -CRInt~odw? otrol register interrupt number.
21 Rdllagdb?;ac to indicate that buffer has data.
22 -Ud~flffdb?-Reaa buffer for non-even read sizes..
23 -WrtFlaq4bi;F2a to Indicate that buffer has data.
24 -Wrthffrgtb?;Ra buffer for non-even write sizes..
25 -Dopatrdbl2dup (?)
26-

2: foruationp ;.t49*ge 1/O Board Driver Vear. 1.0', Od~h, Oah,'5
29 DrvrN~medbV Driver Same
30 -Btatldbl 1/O Base port eddre.. 5
31 - tat2dbl Interrupt vector :
32 -Ab.addrdb' Driver address 5
33 -PressKeydblPreea any key to continue . ..
34 -CrLfdbOdh, Oah, '1'
35-

3 LdlOazdblodvalue for 1/0 bess address.', Odh, Dah 5
38 - UdCmdLinedb'Bad commmand line structure.', Odh Oah T
39 - adlnt~odb'flad interrupt number.', Odh, 01h, + '
40 S BytaxErrdb'Syntax Error: iob.bin <IOBase> <Interrupt Vector>
42 - n~lDvc Number>, 0db, Oaks, IS-
43 - ------------------------------------------------------------------------------
44 a Zxcute colmmnan.
45 - ---------------- -------------------------------------------------------------
46-
7? Interrupt:

48 puahax
49 -PUahbK
50 -pushcx
51 puehdx
52 -pumhdi
53 1 pushoi
54 M p eh

puepus

57 ;ReAtrieve the address of the request header packet.
50 - ovbx, cu
59 - uovda, bx
60 -leadi, RoqPkt

63 - movbl,fusecats(dni]urahpunoi-tion
64 - xrbb, bh
65-
66 - jPM. 1s a legal function number.
67 s hlbx, 1dpr(uch x
66 - opword tr(nah bz
69
70 - uncTh~dwlnitialize;Punction #00.
71 -dwfllockDvc;Function #01.
72 -dwBlockDvc;Function 602.
73 -dwIOCtlRead;Function #03.
74 -dwRoadFunction #04.
75 -dwBlockbvc*Function 105.
76 -dwI nputsttdue-Function #06.

78 w~rto uncion #08. #7
79 -dswrito~er;Function #09.

60-dwOutput.status;Function #0a.
SI0- dWllockDvc*Yunction 10b.
82 -dwI0CtlWriHe;Function #Dc.
83 -dWOponDvc;Function god.
84 -dwCloueDvc;Function #On.
65 -dwBlockDvc- unction W0.
86 -dwmOutBusy;iunction #10.
87 -dwBlockDvc;Function oil.
88 - dwfllockDvc;Function 112.
89 - dhw~fnlOCtl,*Functlon 913.
90 -dwfllockDvc ;Function 614.
91 -dvfllockDVC;? unction #35.
92 -dw~lockDv 'Futin16
93 dwLilockDvc:Punction j 17.
94 -dw~lockDvc;'Iunction #18.95 dwlOCtlQUery;Function #19.
96
97 ----- ---------------------------------------------------------9S -JleAM --- PeAM "ata frrsm 4eVie. This routineQ baa two entry points.
99------------------ - ------------------------ --------( 100 - PAMa:

103 ; Error check for possible zero byte reads..
104 .ovcx, ee:IdiJ.irwrflytem1 05 -capax, 0

106 - nzflon~erolead
10107 - apactuzam
109 $ Got pointer to read buffer, zero out bytee reed counter.

Pages
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110 - Monterofleadt
211- leadi, ea:[dii.irwr~uffer
112 zorsi, ai
113-
114 11gf theme is a spaer byte to read, got it.
115 -cgpRdao. 0
117-
It: - Cleer f log

120-
121 ; Got byte end Store in read buffer.
122 n ovel, 3dflffr
123 - ovss:(di), &I
124 - mcdi
125 - maui
126 -denax
12 -
128 -Determine if there are any COMPIetO Words to read.
129 = oed:*
130 -mye
131 - shrax, In
132 -xz jzedByto
133
134 ; Read the proper number of words..
135 -movdx, IO~ace
136 -ReadWords:
137 ; gIf the ReD" 7X11 is empty, read is complete.
138 adddx, 2
13 9 - mal, dx
140? testex, BR RD 31T
141 -J1audoonfes

142-
143 - geed word.
144 - ubdx, 2
145 - mal, dx
146-
147 -;Save word.
148 - ove.: (dii, a
149 -adddi, 2
150 -addsi, 2
151
152 - ghuok to see if enough words have been read.
153 - ubbx, 2
154 -loop~eadWords

156 11If there is a byte left to read, do so.
157 -ReadByte.
158 testbit, 1
159 -JzRdDoml

161 -;Chock to see if Read Fifo is empty.
162 mokodi IOUe.
163 -adddx, 2
164 In"a, dx
165 -testax' S1-R 3D UWT
166 -JzPADome -
267-
16 - g;ed the word, save byte..
169 .ubx 2
170 in"a, dx

172 - mocksit43
173 - mcdi
174 - mv~dfldfr, ah
175 - mov~d~lag, 1

17 1011440an Saev the number of btsread.
170 Donyte
178 leedi, Realkt
180 - ovs: (diIT.irwr~ytee, ai
18I ~atro
1262
2:3- --------- ----- m------------- ---- m-- ---- ---- --- --------
184 M ~ite --- Write data to a device.
185 - ------ M----------------------------M------------------------------------------
186-
107 -Write:
1:88 Outsuoys

19 ;-Got write count and error check for possible zero length writes.
11-movcx, " :EdiJ.irwrflytee

19 - mpox, 0
193 -i neoneroWrt
194 - 3pgsturn0K

1196 -0ot, pointer to write buffer, Save write buffer sime and zero out byte
19 -wite count.
198 - Ilonrol'irt:
1:99 leedi, aS:(di).izwrluffer
20- zorai, ai
201
202: ;Is there a spare byte to writ.?

205 -mr~lg

206 - gChec to meke Sure that the Write yM1 in oat full.
207 movdx, zolscee
208 adddx, 2
209 Ineaz, dx
2 10 -testax, ER IWM FU.LL
211 jzWrtDoee-
212-
213 - g6er out flag.
214 - moWrt~llg, 0
215-
216 - Suild word to write.
217 - mval, Wrtaffr
218 swavb; see(dil

Pegs: 2
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219 - ncdi
220 - tnci
221 - ele
222 -
223 - ;Wrlte word to buffer.
224 - :Ubdx, 2
225 - outex, ax
226 -

227 = Its words to Write VIVO If there are any to write.228 rite:
2209 -mOybi, ex
230 1
231 ar itanyte
232 -
233 - ;Loop to write words.24-movdx, 105am.
235 Wrt~ctORds,
216 -Check for Write VIVO being full.
237 -dddx, 2
238 mIax, dx
239 - teeter, SR WRNULL
240 - 3wrtflons
241 -
242 - ;Get word to write.
243 - ,over, e:[di
244 -adddi, 2
245 addsi, 2
246 -ubbx, 2
247
248 - ;Write word.
249 subdx, 2
250 - outdx, ax
251 -
2522 jny more words to write?
253- loopWrtWorda
254
255 - Check for a byte left to write.
256 WriteByte:
257 testbx, 1
258 a wrtDfon
259 -
260 ";Save-byteand met flag.
261 N OWIM149,

264 -ndi
265 - 1oo
266 -
267 - Save number of bytes written.
268 -rtDo
2269 - leodi, Pkt
2702 movem:M(di .irtwrflytes, si

271 - uPset
272 -
274 - ;Inlputtatue - Determi:ne whetheor ithere aren any Cha~racter. to read or
275 -;not;.276 -- -.----------..... ... . .........-------------------------------------------

277
276 - Input~tatuas
279 -2H0 ;Chek to- sa If there is...sved read byrte.
21- cmpitd~ll 028282- -

283-I 264 - pst the status of the read PI10.
285 -movdx, 108am.
286 -dddr. 2
287 - le. dx
288 testex, 3R RD• HM1T
2989 jnasnmotftftyý
290 -
29 return busy.
292 * readtyy
293 f-ý Nnah Busy
294 -oral, al-
295 -novas: fadi.rhatatu-, ax
296- jipndlntaerrup
297 -rp

298 - h re O7 is not eapty, return that there ie a character in It.
299 - 3FN~ot~fptyr:1
300 -
301 - ra ..
302 - ovae: fdil.rhateatus, ax
303 -jupmadLnterrupt

305 j-----------------------------------------------------------------------------
306 ;Inputrlush --- Input flush.3007 - ----------------------------------------------------... . .......................

306
309 - Iniut2llu s
310 -
311 lag to no saved read character.
312 -iYdlag,313
314 - pRead words from the read FIFO until the"r are no more.
315 - ov "x, IOinm
316 - nhlutMpa
317 a ,
316 ine, ,,319 - teeter, SR RD T
320 -3InF1rhD6ne-

321
322 - subdx, 2
323 - max, 4z
324 -• pldnh ,bLp
325
326 - Done with flush.

2ages 3

Page: 3
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328 - jmpftturuK
329 -

331 -Outputstatus Determine-whether'all-character. have been writtn or not.
332 

-

333
334 - OutputStatu:•
335
336 ;Check to se if there is a saved write byte.
337 -cmpWrtllag, 0
3360 Jnd otbpty
339
340 G jet the status of the write FIFO.341 movdx, 10as
342 - adddx, 2
343 - ax, dx
344 - S Betx,8 WNP3T !

r4 -momW3t8~t
346
347 - The reed VIVO I si. .ty, return busy.
348 '"*usty
349 move ,6 busy08
350 -oral, al-
31 moves: dil .rhBttue, ax
352 jinpudinterrupt
353 -
354 ;The read VIVO is not empty, return that there Is a character in It.
355 Wuotuty:
356 soab, RE
357 xoral, a1-
356 movese: [di .rhfltatus, ax
359 j-mpndinterrupt360-361 ------------ --- -------------------------------------------- - - -----
362 ;OpenDvc/Closeovc --- Remet the devIce
363 -;------ ------- --------------- - --------------- - - -------------
364 -
365 - DenbOCtl:
366 - ,sjtablish the base address of the board.
367 movdx, IOJmae
368 - ddx 2
369 a
370 ;Raast the board.
371 movax, Ca RIEMT
372 outdx, ax
373 -
374 -;Now met normal operating values.
375 - oax, Cl IABV UN
376 outdx,
377

379 movdlg, 0
380 movWrtFlag, 0
391

383

384
385 ---------------------- -----------------------------
386 -Unimplemented functions below.
37 -;---------------------------------------------------------------------------- -
368 

-

369- OpenkDvcs
390-Cloaev
391 IOtltead:
392 - IOCtlWrite:
393 WriteVert
324 - OtLogicals
395 - etL*aioal;
396 -ZOCtl&uryz397 -327326
396 -Ille al. or unsupported commnd.
39 - loak~vc:
400 - noval, Z*ER UUWOIWmCOlU4AD
401 -
402 - ;irror In command.
403 - RturnEMl:404 leedi, as: RqPkt
405 - ovah, RR 33103
406 movesh diT.rhstatue, ax
407 -jmpmndlnterrupt

408 -
409 - ;Comiand completed succeefully.
410 R•turnag:
411 -leadi, a.:R"kt
412 -movah, BO413 moral, a1--
414 movesa(dil.rhatetus, ax
415
416 - Bdinterrupts

41 pop
419 pepsi

421 - 0"
422 popax
423 -popb
424 -
425 -

426 -
427 - ;Initlalie the driver by saving the address of the request header
428 ket.
429 tA tr
430 - -idptr oetleqkt, bu _.
431 noword rtr ossRsqPkt * 2, s
432 - retf
433
434 - --- �-----...--. - - -
435 ;Dmp what Is below this point.
436 - -

Pa"I



Date: 7/10/92 filas IOBDRVU.A.N
Size 18790 Last Modified: Tue Jun 30 11,18:34 1992

t 437 - ndflrivers
438-

E 439, --
440 - iPriltAiy Print the proper number of characters to the screen.
441 -------------------------------------
442 -
443 - prooPrintAry

445 - gBave characters.
446 -

449 -
449 - sPrint characters.450 -Prt~yLp:

451 a aovd-, el Ibh]
452 movah 02h
453 -int21
454 - incbx
455 - loopPrtAryLp
456-
457 1 isu.n from print loop.
458- popix45:

461 -
462 - endplrintAry
463 -
464 -.------------------------------------------------------------------------------
465 -P urint g --- Print an error mossage to the scramw.
466 -
467 ;dx- Contains the offset of the error message to print.
4

6
8 ---------------------------------------- ------------- - ------------- -.---

469 -
470 - poorintMsg
471 -
472 - ;Save registers to be used.
473 pushds
474 -pushax
475 -
476 - ;Create pointer to string.
477 - mOvax, cs
478 - mods, ax
479 -
480 - ;Call MS-DOS to display string.
481 - movsh 09b

483 -
484 - ;Reator registers, return.
485 popex
487 -pd
488 -

489 - eandpPrint"sg
490 -

497 - prccl-kipWhitn
498

499 - ;Skip white space.
500 - ush
501 - Bkipohitapscet
502 -naval, ea:Tbx
503- c I l'
504
505 c 09h
5 06 - lllthace507 - m t ape
508 -

5509 ]-;as white space, continue.
510 VMS

513-
514 - Pound non-white space character, return.5515Pae

$ 16 o
517511 -

519 - e1dplkipwhite
520 -521 - ;.....................................................

522 - gltte --- Print a hexadecimal number to the display.
523 1
524 -Tbe number to print in stored in ax.
525 - -- - -- -- - -- - -- -- - -- -- - -- - -- -- - -- -
526 -
527 - proocrtnm

S 528 -520
529 $gave registers used.

531 - ox

532 -

5334 - 1n1ltialize string.
535 movdi offset Dspetr
537 - mcd ptr (1i, w0
537 - be
538 - movhvteptr
5390- mci [di], x0
540 : uovV tPtr d ,10
5401 n0

542 , ptr ("I , "'0
544 4Pe [l, '0'

Page: S
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546 -
547ptr
54:-n jopr [di.t '5'549
550 -
551 - ;Print value to string.
552 - movcx, 4
553 p rttEmoLps
554 ;Qet current hax character.
555 1 Uvdl, &1
556 a-ndl, Ofh
557 -
558- ;heck to Ns If decimal (0-9) or higher (a-f).
559 cadl, Gab
560 -
561 

-

562 - Is higher (a-f), convert to character to display.
563 - sidl, Oah
564 adddl 'a'
565 - jmpixchar566 -
567 - ls decimalt, convert to character to display.
568 *lDecimal:
569 - edddl, '0'570 -

571 ' Store charatr
572 - &XC ater
573- e r (di), dl574
575 -
576 - ;Shift next character into lowest nibble.
577 - shrax, 1
578 - shrax, 1
579 - shrax, 1
580 - srax, I
51 -2 2Qcp]rtfiaz~p582

S83 - IClreate pointer to string.
584 movdzC, offset DspStr
585 -421,lrintae• g
586 -
507 - JI to"e registers and return.

8 papdi

591 -W

592 -
593 - ehdplrt~ex
594 -

595-6 - --.--------------------------------...
596 -,'•et'a --- Get a hexadecma uue.fo a string;';;'.•..............
897 -
598 ;TI'he 20 bit pointer em: (bxj points to the start of the hexadecimal number.
is:0 - ----- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
601 - procgetlax
602 -
603 - ;Set up a loop counter.
604 pushox
605 - xorax, ax606 - movcx, 4607 -

608 - GetDigitat
609 ;Test for in 0-9.
610mov ,cd em: 1hz)
612 - TIb1a ]ecirr
613 -coodl '9'
614 - gl9" cr
615 -
626 -;Is decimal, convert.
617 " *616 phdd~ exigit
619 -
620 - n Ie for In af
621 ot r n a-f.
622 cmudl, 'a,
623 129
624 ml 'V
625
626 -
627 - ;In lower as&e hexadecimal, convert.
628 - uhl, 'a'
629 adddl, Ooh
630 - •AddkeuDigit
631 -

63 2 s"Let for In A-.633 " *a~e
634 - dl A&

636 -
637 - igmk•otm
636 -
639 - pIe lower caem hexadecimal, convert.
640 - Subdl, 'A'
641 adddl, Oah
642 -
643 -Add another hex digit.
644 AJuaxeD~qltjs
645 -blax, 1
646 "hale, 1
648 -hlax 1

649 otal, 4l
650 -

651 - a•1 aond
652 laobe m
653 - laooipet.Digi
454 -

Pages 6
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65 - otHe•t:6556
657
657 -

659 - endpGeter
660 -
661 - --- -. .- -------------------------------------- - -------------
662 ;P-lause - ait for y ket to be input before continuing o0.
663 ---------------------------------- - ---------

664665 - pralue
666 -
667 - MPrint prompt me&
666 mo-d, offset Presee
669 -allPrintflsg

670-
671 - Joe key from keyboard.
672 movah 0lb
673 -nti•tl
674
67 6 ulrint now line and carriage return.676 - odx. offseat CrLf
677 - alllrintmag
670 -
679 - ct68O
6:1 - eandpreame

665 - Irommend line.
636 ---- --- ------ ----------------86 - -a l ce ....................................................
667 

-

686 - Print driver Info.
689 'nitT.lize:
690 - get a pointer to the config.sys comand line.
691 .leomb, .e:(dil.irParamuddresm
692 - ovword ptr CmdLine, bx
693 -nwword ptr CudLine + 2, as
694 -
695 - 16earch for end of line.
696 - sovox 300h
697 -Lnnidlroths

696 -Movdl, byte ptr easibel
699 C
700 32e2xllndilm
701 W ab
703 a "

"704 h
705 -
706 - gt here, we culd Dot find end of line.
707 W v et badftdLine
706 - allPrrilnt g
709 3mpaadznit
710 -
711 - ;ound the end of the acmmand line parmeters, establish count.712 - fadnnLT, ne,8
713 moves, b
714 mavbx, word ptr aesCmdLine
715 subox, b•
716 -
717 - nI[ip program eam.
718 - kij.ProgNaus
719 amval, ee:[bx]"720 - ml , '
721 3e drog
722 10pdl, h

725 - loOp~kipfPtoglaum726

727" ;If we got here, we are at end of comannd line.
726 - =di, of fset Syntaxarr
729 - oalrintftg
730 - EV1adInIt
731 -
732 - ikip white opaen and get the first parameter, which is the I/o733 .,,ee, address.
734 andlroom:
735 -ellSkIpgn1te
736 - ,callget.ex
737 - novwcs:Zonae, ax
738
739 - Cbeck for legality of IOlase address.
740 cops , 3ffb
741 -JIGBAMMO
742 offet badIase.."743 alilJri ntlieg
744 -mi•ac[nlt
745 -
746 - Get ecood paraumter, which Is the hardware Interrupt vector number.747 -UeO

746 - callSkipWhIte
749 •Cailgetese
750 - eo@sta:ntVealo, *x751 -

712 l ie this interrupt vector number 10? If so, convert to the proper
753 motrol regisetr value.

75545 w~,4.1n11
756 movcs•CRIntao, 0
757 - j•eget~vclo
75 -
756 1* , - -this Interrupt vector number 11? If so, convert to the proper
760 con trol register value.
761 -akIntll:
762 - cpnax 11
763 JnChm&nt12
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764 - movoe:CRlntmo, 2000h
765 -jeg~etDvcoc

766-
767 ; Is this interrupt vector number 12? If so, convert to the proper
76 a loontrol register value.
769 - hklntI23

77 1- nC ni
772 - ocs~n~,2000b
773 - jiPetWNSO
774-
177Z - jsthislinterrupt vector number 12? It not, print an error message and
776 -ex t driver with a bad initialisation.
777 - hxlntl5:
776 1 es.1
779 -e IntlS
760 - indl offset Uedlntflo
781 -cllPrintImsg
762 -jap~adInit
763-
784 ; This Is interrupt vector number 15, convert to the proper control
765 i re later Value.

767 - movos:CRIntUO, 30001%

76- et vthe -device number.

793 cal- pwst

794 - sodity the driver news In the header structure.
795 -leaft, Dvcildr.dhXlainerUnits
7M addol, '0'
77 - ovibit * 3], &1
798-
799 - Prinst driver title.
600 - ovdx, offset Ndz~ag
I0 callprintlksg

:03 - Print the description for the driver name.
604- mvd, offset Orvruame605 a airite

606-
607 ;Print the driver naew.
606 pushee

6 10 - ov aO
611l moves, be
612 -leabx, Dvcndr .sdhamsorunits
813 -caliPrinthry
014 -popes
615-
6167 - Print carriage return, now line.61I movx offset CrLf
@16s callprint~ag
619-
620 - jcho the blose" address value.
621 -movdn, offset Stell
622 -callPrintae
623 -movax.Z es
624 -callprtU a
025 -mcvdx, offset CrLf
6276 : callPrintNag627
626 : jichc the Interrufpt vector value.629 - vdx, offset Etat2
630 - olllrintusg
631 -movex. IntVecop
632 - alllrtilex
633 -movdl, Ioffset CrLf
a34 aellirint~ag635-
636 $Pjrint the absolute address of this drive..
6137 movdx, offset AbsAddr
63 - aallprints

640 -callprti6e

641 -movdl, Is,
642 -movab 02b
643 -int2Il

6

a4 - eahx, ca:Dvcildr
645 movax, be
646 -callprtnegs
647 -movdx, offset CrLf
646 aslllrintftg
649-
6 5 - InitialiZe the board. Begin by reseting all registers.
651 -movdx, cm:3 IClee
652 - dddx, 2
853 = mvex, CR UREN
64 -Outia, &C

656 ;Nobw eart control register with Interrupt number and interrupts turned
657 ;o3ff.
650 movess. CR SA63V*3J15
659 -out", me,

"MI 10acomeful itaitiahisation, meat proper Values In packft, Xet~an.
662 leadi, catRqft
963 - oe:00;dii .irstetua, l00h

664- oywrapt esIdiIirgnadddress, offset ZndDriver665 - owr tr =ss [d~ijI .rldhddrema + 2, cc
866 -
667 -celiPause

406 - jPSdlnterrupt

670 - trror in initializatioa, met proper values in packet, return.

672 = !ledimasgeqtkt
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673 - mlovs:[di].irStetus, 8100h
874 -ovvord ptr mm:(di].irEndAddresm, offset EndDrivor
675 m ord ptr om: di].irEndAddrmeas 2, ca
676 movesm:([di ).irMemmegeFleg, 1877
878 -aaflPue
679 -Ja~ptudlnterrupt
88061 - ttend
862 --

&03 -

9

j
I
i

4• III I N ~ ~ i ~ NH •222 Page: 3

I



Date: 7/10/92 File: Pm0X'COL.fTXT
Size: 2558 Last Modified: Thu Jul 09 17:13:48 1992

1 - PC 1/O interface Board Driver

3 -
4 - Packet Structure
5 ---
6-
7 - Word Count includes data
8- racket and check sum.

10 -------------------------------------------------------------

16 heck sum 1. 2.s campl semnt of the summstion of
17 the Word count and all words in the data Packet.

19 - Word Count:Is 16 bits, little endian unsigned integer that represents

19

20*the number of data words and the check sun word.
21
22 -Data Words zAny number of data words (an even number of bytes).
23-
24 -Word Chocksum:The 2.'os eetngaino h or on n l

2625: wrdcut m 1 words in the data packet.

27 -Comunications Protocol
28 ------------ -
29 -
30 When deeigning a driver to work with the MS-DOS PC o /O board device
31 -driver, it is important to realize that the MS-DOS driver looks like
32 -a character device to the application.
33 -
34 - This means that the driver will packetize writes to it and sand then
35 -to the Vid/CP using the following protocol.
36 -
37 -SUc6 the MS-DOS device driver boa no bufferin• (xcept what is on the
38 -/ b oard) and uses no interrupts, pa.ckets to aM-Odevice driver
39 -must be loes than or equal to th sze of the F M 'a.
40
41 - Sendersciever
42 --------------
43 - h)Write all of packet to the
4 Write FFOV.

46 - 2)8at BThT bit in control
47 - register.
48-
49 1 3)WAt for SWAT 1 bit In status
I? - register to go Nigh.

52 iJnterrugt frpollfo
54 in the sTatus rFgis
55-
56- 2)Read packet word count.

5: 3)Wbile packet not complete
5O do
60 Reed data from Road FIFO.
61: done

62 -

63 -4)8t BUT 1 bit in control
64 register. -
65 -
66 - S)Wait for BUT 0 In status
6 register to be oe•ared.
68 -
56 - 4)Cloar iTATO bit in control

S701 register.

72 - 5)WAt for STAT 1 bit In status
73 ister to be Eleared.

74 61) lear 8A1bit in control
75 register.

77 - Instructions for Using the MS-DOS PC I/0 Board Driver

79 -
80 - To use the device:
81-
62 1)Open the device am you would any other device.

83 -

84 - 3)Red or write to driver.
85 -
76 - 4)Wntn done. close the device.

pa"
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I - Yet Another PC 1.10 Board Driver Design Document
2-------------------------
3-
4 - ofwar. structure of MS-DOS PC device driver;

t h9rt sio to be the size of the write buffer.

1 Wri6te hten wrd t~sie ofueI the rkequs ttheaderie 0.
InWitiaize ithe chze isu griate then pacetrsze

Writ thIpcett the write size ind sumte then wordqua to 66 ye
cacuat thheecnu

17 rickte tize hcsumt h write six*.
ise S!Rd0

36 -
37 Divbiatdwie the packet size frbts ytoe the write size.I ors

421
22 Write ther isr asarizeofth packet til ating winthe readFO P
25 InSetilz the readoi k equan wth thereang packet size.

50 W riea the packet toite fromthe reFOand sunthwrd.t
252 cavculthe pakth sie ahos teiiilchcsmvle
53 WriSet the readksiequal to the packet size.

2sttsread isiz otherr. ufe ie

31entireepacket bit beenlread
33J status register.35while BThOis soet.
37Sebtrctwe the packet size buffe to e zero.mss

40 Read Pacee

I1-------
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MICROINSTRUCTION FORMAT
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ADDRESS CL'AERATC
ADDRESS REGISTER FILE MICROSEQUENCE

PORT A PORT A PORT B PORT 8 SHIFT PORT A PORT I BRANCH ADDRESS
VRrTE SOURC IVRITE ADDRESS •RITE ,RCE VRITE ADDRESS CTRLREAD ADDRESS READ ADDRESSR•l~l~~ll~~l~ ll• 1I•1 •11 1 211 1119 2 9 I0, g1o•1. I-.-~ in

PORT A PORT A PORT B PORT B WT PORT A PORT B

VRITE StUMR /VR1IE ADDRESS WRITE SMCE VRITE ADDRESS CTRLREAD ADDRESS READ ADDRESS ca

ADDRESS PORTS ADDRESS RAM #2 COMPARATOR TWO DIMENSIONAL TWO DIMI
COUNTER #4 COUNi

ADDRESS ADDRESS INPUT ROW C INPUT I R,

PORTC PRT I& ADMSS DDRSS ATA X SELECT Y SELECT SOURCE MIJ~ER CMNTE SOURCE ~

INPUT RDW co]LU~t INPUT L :

PORT A PORT P PORT E ADDRESS DATA SOURCE CIUNPER C R SOURCE .

in r. r-.,I r. - i• ,ama•vim nfli I • •!llla~lt]rl!!IIU..u

SOURCPROCESSOR BC

MULTIPLIER #1 MULTIPLIER #2

SOURCE X CTRL Y SOURCE T INSTRUCTION X SOURCE XCTRL Y SOURCE INSTRUCTION R X SOURCE X Cr.L Y SOUmCTRL PORT CTRL. PORT_____

sorC c Ysu•r,. INHT4U:T11 × oUR o s lý.: 12 950PSOURCE X CTRL Y SOURCE y INSTRUCTION X SOURCE XCTRL Y SOURCE INSTRUCTION O X SOURCE X CTRL Y SOWU

CTLPORT CT3L PR

- V m~ -u MU R S 0-.-14-101 -Ulp

DATA REGISTER FILE E-N = _ MEMOR'
36-BIT IMMEDIATE DATA FIELDS (EN = 0) SOURCE

PORT A PORT A PORT B PORT I W PORT A PORT IB PORT C

VRMMRC WRTEADDM WITE=RE WITEADDES CTL RADADDRESS READ ADDRESS 3 (REAL)

PO3RT A PORT A PORT2 P13RTI 2 a PORT A P13RT I -PORT C
WRITE StIEWRITE ADDRESSIWRITE St=IVEWRIE ADDRESS IM READ ADDRESSREAD) ADDRESS - (REAL), -A

RR 11 1191R 11111 mo Alilll-l



ERA OR BOARD
MEMORY C IMMEDIATE

MICROSEQUENCER CONTROL DATA FIELDS 7 ADDRESS RAM #1

BRANCHi ADDRESS INSTRUCTION W.,E AUX ADDRESS DATAVM RITE

CONDITION SELECT WE AUXJ ADDRESS DATA

40111f 1111-11 gil oII i4A
['4IgI L I (X 14.

DIMENS!ONAL TWO DIMENSIONAL TWO DIMENSIONAL TWO DIMENSIONAL UNDEFINED
DJNTER #4 COUNTER #3 COUNTER #2 COUNTER #1

ROW MI N!U REG INPUT ROW Mr W E. . INPUT ROW ML-W ,,G INPUT ROW am ,IJH
___SOURCE COUNTER SOUNTER SOURCE CaUITER CUMER SOURCE C ER C.UNTER

XW ý ýU gm En FS t- 9 r0 9U

z IY~I~EXC~I SOUCE NSTUUTONE INSTRUCTION

S R O W II .U MN REG IN P U T R O W COLUMN R._ IN P U T R O W C M w RE GS IN P U T R a wI CGLIU M R SS

IPORT c OUC -;TCTERIMN SORC POIUUTRT I SOURCE XWE CTLM OR ECRL I

(45 i pr AbCý C4A t- M£4 cu A. X4 n4 1' 15jjxfNi

SSO 0 ,BOAFRD
ALU #1 AL.U #2

RT X S CY UIISOURCE X CTRL Y SOURCE INSTRUCTION rI
P3RTPORT CT-L >1 PORT>- r-,-,-,-,- -M~ -9 S1 0 I 1 11 111:••• f H- -!• HoI•••

X SOURCE X CTRL Y SOURCE INSTRUCTION PORT X SOURCE X CTRL Y SOURCE T INSTRUCTION P

JIVMEMORY WRITE ADDDRESS PORTS 1/0 PORT
;'Ao) ORT j OUCE SELECT

I A P O R T 2 P 1 R T C I P O R T D P O T CPR' R A M G N Rý)DRESS READ) AD0DRESS (REAL) (IMAGINARY) PR OT') RA MGNR

A PORT I P1RT C PORT ID P3RT A PORT ] REAL IMAGINARY
DMRREWR REAE ADDRA D (REAL) PIORT PNARY)

)DRSSRED DDES S (RAL !(7 AINRY PRTC OR D4u R AL MAINARY1Illu
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Date: 6/30/92 File: CPH.FIX
Size: 53964 Last Modified: Fri Feb 21 16:26:02 1992

1 - /* PRELIMINARY MICRO ASM DEFINITION FOR CPH */
2 - WIDTH - 768
3 -PASES 1
4 DEFBIT - 0
5-6 -/* . .................. . - ...........
7 - MICROPROGRAM SEQUENCER (FIELD SEQ) -am .. . . . . m .. . . .. . . . .. ..

9 - */
10 -
11 - SEQ[24]
12 ,
13 DEFAULT - OX00007F
14 - /* BRANCH ADDRESS */
15 - BRA116]
17 - DEFAULT - OXO000

18 - LABEL
19- }
20 -
21 - /* INSTRUCTION */
22- INS81]23-
24 - DEFAULT = 0X7F /* CONTINUE */
25 - CONT - 0X7F /* CONTINUE */
26 - LDLC = OX7E /* LOAD LOOP COUNTER */
27 - LDSP OX7D /* LOAD STACK POINTER */
28 - LDSRP OX7C /* LOAD SUBROUTINE RAM POINTER */
29 - LDSUR OX7E /* LOAD SUBROUTINE RA */
30 - SIM = OX7A /* SET INTERRUPT MASK BITS */
31 - RIM 0X79 /* RESET INTERRUPT MASK BITS *1
32 - RINT 0X78 /* RESETS INTERRUPTS */
33 - JI X077 /* JUMP IMMEDIATE */
34 - JIC X 0X76 /* CONDITIONAL JUMP IMMEDIATE */
35 - X 0175 /* JUMP RELATIVE */
36 - JRC X 0X74 /* CONDITIONAL JUMP RELATIVE /
37 - LI 0X73 /* LOOP IMMEDIATE 1
38 - LR X072 /* LOOP RELATIVE */
39- LS 0X71 /* LOOP TOP OF STACK*i
40 - TWEI X 0170 /* IMMEDIATE THREE WAY BRANCH */
41 - TWBR = 0X6P /* RELATIVE THREE WAY BRANCH */
42 - C - OX6E /* CALL SUBROUTINE */
43 - CALLC - OX6D /* CONDITIONAL CALL SUBROUTINE */
44 RET - OX6C /* RETURN FROM SUBROUTINE */
45 RETC = OX6E /* CONDITIONAL RETURN FROM SUBROUTINE */
46 - PUSH - OX6A /* PUSH STACK */
47 PUSBC X 0X69 /* CONDITIONAL PUSH STACK */
48 PLDLC X 0X68 /* PUSH STACK AND LOAD COUNTER '/
49 - PLDLCC - 0X67 /* PUSH STACK AND CONDITIONALY LOAD COUNTER */
50: POP -X066 /* POP STACK */
51 POPC - 0X65 /* CONDITIONAL POP STACK '/
52 - EI - 0X64 /* ENABLE ALL UNMASKED INTERRUPTS */
53 - DI X 0X63 /* DISABLE ALL INTERRUPTS */
54- }
55- }
56 -57 -/* .....................................=

58 - CONDITION CODE SELECT (FIELD CCS) -

60 -
61 -
62 - CCS[8]
63 -
64 DEFAULT - 0B11111111
65 - /* SELECT */
66- SEL[7]67-
68 - DEFAULT - 0B1111111
69 -
70 - /* FLAGS FOR MULTIPLIER #1 */
71 - M1INT - OB0010000 I* INTERUPT /
72 - MIPE - OB0010001 /* PARITY ERROR ./
73 - MiN B 090010010 /* NEGATIVE /
74 MIZR 0B0010011 I' ZERO *I
75 MIOV " 0B0010100 /* OVERFLOW
76 - MIUF - 0B0010101 /* UNDERFLOW */
77 - MlIn OB001010 /* INEXACT */
78 - MINY - 0B0010111 /* INVALID OPERATION /
79 - MIRAN OB0011000 /* NOT NUMBER
80 - MIRND = OB0011001 /* ROUND UP */
81 - MIDEN 0B0011010 /* DENOMLIZED *
82 - MDIV - 090011011 /* DIVIDE BY ERO
83 -
84 - /* FLAGS FOR MULTIPLIER #2 */
85 - M2INT - OB011100 /* INTER UPT */
86 - M2PE - 0BOO11101 / PARITY ERROR */
87 - M2N - 0B0011110 /* NEGATIVE *
88 - M2ZR -00011111 ZERO */
89 - M20V - 090100000 OVERFLOW
90 - M2UF - 090100001 / UNDENFLOW */
91 M2INX 090100010 /* INEXACT */
92 - M2INV = 090100011 /* INVALID OPERATION */
93 M2NA OEf01000 /* NOT A NUMBER */
94 M2RXD 00100101 /* ROUND UP */
95 - M2DEN OB0100110 /* DENORMALIZED *I
96 M2DIVE - 090100111 /* DIVIDE BY ZERO */
97 -
96 - /* FLAGS FOR ALU 01 */
99 - AlINT - 0B0101000 I* INTERUPT *

100 - AlPE - 090101001 /* PARITY ERROR 'I
101 - Ain 0101010 /* NEGATIVE /
102 - AlZR - 090101011 /* ZERO */
103 - AlOV " 0B0101100 I* OVERFLOW 'I
104 - AlUF - 090101101 /* U•NDERLOW */
105 - AIIX - 090101110 /* INCXACT */
106 - AIINV 0 0101111 /* INVALID OPAION
107 - ANAN 00110000 * OT A N•UM
108 - ARN 020110001 ROUND up
109 - AlDEN " 090110010 /* D=NORMALIZE DI

Page: 1
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110 - AICRY - OB0110011 /* CARRY OUT */
111 -
112- /* FLAGS FOR ALU #2 */
113 -A21NT OB0110100 /* INTERUPTF
114 - A2PE - 0B0110101 / PARITY ERROR /
115- A2N -0B0110110 /* NEGATIVE /116 -A2ZR O B0110111 /* ZERO */

i117 -A20V n B0111000 /*OVERFLOW *
lie A2UF n B0111001 /* UNDERFLOW *
119 -A21NX n B0111010 /* INMEACT */
120 - A2INV B 050111011 /* INVALID OPERATION */
121 - A2NAN , 090111100 /* NOT A NUMBER
122 - A2RND n 0B0111101 /* ROUND UP */
123 - A2DEN - OB0111110 /* DENORMALIZED */
124 - A2CRY B02011111 /* CARRY OUT */
125-
126 - * POLARITY *I
127- PSEL[1]128
129 - DEFAULT n 0B0
130-
131-
132-
133 /*
134I ADES135 -..................... ========

136 -
137 -
138- INMADD[16]139- {
140 - DEFAULT - 0X0000
141 - /*must have a subfield for normal syntax. IMMADD value fails. */
142 - IMMVALUE[16]
143 - {
144 - DEFAULT - OXOOOO
145 - }
146-
147 -148 /* . ........... ;................. ft ........... - ....
149 - TWO DIMENSIONAL COUNTERS (FIELDS CNTT-CNT

150-S 151 - */
152 -
153- C 1T[131
154 - CNT2 131
155- CNT3 13
156 - CNT4 13]
S 15 158 - hEFAULT = 0B0000011011011

159 -/* INPUT PORT SOURCE SELECT
160 - SEL[4]
161-
162 - DEFAULT - 0X0 /* SOLD (REGISTER SELECTS ITS SELF) */
163 - HOLD OXO /* HOLD (REGISTER SELECTS ITS SELF) *o
164 - CNT1 n 0X3 /* SELECT COUNTER #1 ADDRESS OUTPUT
165 - CNT2 - 0X5 I' SELECT COUNTER #2 ADDRESS OUTPUT
166 - CNT3 OX8 /* SELECT COUNTER #3 ADDRESS OUTPUT */, 167 - CNT4 0XA /* SELECT COURNTE R #4 ADDRESS OUTPUT *16a RC1 012 /* SELECT COUNTER #1 ROW/COL OUTPUT
169 - RC2 OX4 /* SELECT COUNTER #2 ROWDCOL OUTPUT */
170 - RC3 =017 /* SELECT COUNTER #3 ROW/COL OUTPUT */

171 -RC4 0X9 /* SELECT COUNTER #4 ROW/COL OUTPUT *
172 - IMM 0X6 /* SELECT IMMEDIATE ADDRESS */
173 - IOPORT - OXl P* SELECT 10 ADDRESS FORT */
174 - RAMI OlEXB P* SELECT ADDRESS RAM #1I
175 - RAM2 0XC P* SELECT ADDRESS RAN #2 */
176 - REGA - 0X P / SELECT REGISTER FILE PORT A */
177 - REG- OXE /* SELECT REGISTER FILE PORT B /
178 - FFT - O0F /P SELECT FFT ADDRESS SEQUENCER */179- }
180 -
181 - / INPUT PORT PHASE SELECT */
182- PSEL[i)183 f
184 - DEFAULT - 090 /* PHASE 0 */
185- P0 =OBO /* PHASE 0*/
186- PI =OB1 /* PHASE 1*/
187 - )
108 -
189 - P ROW AND COLUMN COUNTERS */
190- ROW[31
191: COLf3192- {
193 - DEFAULT B 09110 /* NO OPERATION /
194 - NOP OBI10 /* NO OPERATION /
195 - CLEAR - 0B000 P RESET COUNTER */
196 - INC 0B010 /* INCREMENT */
197 - DEC B 09011 /* DECREMENT /
198 - LOAD .OB100 /* LOAD*/
199 -
200 -
201 - P* DIMENSION AND OFFSET REGISTERS */
202 RNGS[2]203-
204 - DEFAULT B 0911 /* NO OPERATION */
205 - NOp - 0311 /* NO OPERATION */
206 - DIM - 0B01 /* LOAD DIMENSION REGISTER '/
207 - OFF n OB10 /* LOAD OFFSET REGISTER
208 - DI4OFF - 0B00 /* LOAD BOTH REGISTERS */
209-
210-
211 -
212 - .. .------------
213 n ADDRESS REGISR FILE (FIELD ARCO) -
214 -..........................
215 - */
216 -
217- ARZE[36]

with the standard C compiler and linked with our object code. UnderI
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219 -DEFAULT - 0X080100000
220 - I PORT A INPUT SOURCE ~
221 - ASEL[51
222- f
223- DEFAULT GB090001 /* NO OPERATION ~
224 -NOp OB000001 It NO OPERATION ~
225 -CLEAR OB0900000 I CLEAR REGISTER (ALL ZEROS) *
226 -CITl - 0900110 I SELECT COUNTER 91 ADDRESS OUTPUT *
227 -CNT2 -OB01010 I* SELECT COUNTER #2 ADDRESS OUTPUT ~
228 -CNT3 OB010000 I* SELECT COUNTER #3 ADDRESS OUTPUT ~
229 -CNT4 OB0910100 I SELECT COUNTER 04 ADDRESS OUTPUT ~
230 -RC1 OB000100 /* SELECT COUNTER #1 ROW/COL OUTPUT *
231 -RC2 OB001000 /* SELECT COUNTER #2 ROW/COL OUTPUT ~
232 -RC3 OB001110 /* SELECT COUNTER #3 R/CLOUTPUT *
233 -RC4 - 010010 /* SELECT COUNTER #4 =OWCOSL OUTPUT
234 -m OB -001100 /* SELECT IMMEDIATE ADDRESS /
235 -IOPORT OB000010 /* SELECT 10 ADDRESS PORT ~
236 -RAMI OB010110 /* SELECT ADDRESS RAM #1 ~
237 -RAM2 OB011000 /* SELECT ADDRESS RAN #2 ~
238 -REGA OB011010 /* SELECT REGISTER FILE PORT A ~
239 - ERO OB011100 /t SELECT REGISTER FILE PORT 8 *
240 -SET OB011110 It SET REGISTER (ALL ONES) *
241-
242-
243 - I PORT A WRITE ADDRESS ~
244 - WRA(61
245- 1
246 -DEFAULT OB0900000 /* REGISTER 0 *
247-
248-
249 /*I PORT B INPUT SOURCE *
250: BSEL[S)

252 -DEFAULT -01900001 /t NO OPERATION *
253 -NOP OB000001 /* No OPERATION t
254 -CLEAR OB0900000 I CLEAR REGISTER (ALL ZEROS) t
255 -CNfT1 OB000110 I* SELECT COUNTER #1 ADDRESS OUTPUT ~
256 CNT2 OB090110 /* SELECT COUNTER #2 ADDRESS OUTPUT *
257 -CNT3 OB010000 /* SELECT COUNTER #3 ADDRESS OUTPUT *
258 -CNT4 OB010100 /* SELECT COUNTER #4 ADDRESS OUTPUT *
259 - CI OB000100 /* SELECT COUNTER #1 ROW/COL OUTPUT ~
260 -RC2 OB001000 /* SELECT COUNTER #2 ROW/COL OUTPUT ~
261 -RC3 OB001110 /* SELECT COUNTER #3 ROW/COL OUTPUT *
262 -RC4 OB010010 It SELECT COUNTER #4 Row/COL. OUTPUT
263 - mm 09301100 /* SELECT IMMEDIATE ADDRESS *
264 - 109aM 0900010 I* SELECT 10 ADDRESS PORT t
265 -RAMl OB010110 /* SELECT ADDRESS RAN #1 *
266 -RAM2 OB011000 /* SELECT ADDRESS RAN #2 *
267 -REGA OR011010 /* SELECT REGISTER FILE PORT A t
266 -BMEGS 0911100 It SELECT REGISTER FILE PORT B '
269 -SET -0911110 /* SET REGISTER (ALL ONES) "
270-
271-
272 - 1 PORT B WRITE ADDRESS *
273 - WRB(61
274-
275: DEFAULT - 09000000 /* REGISTER 0 ~
277-
278 - /* SHIFT MODE CONTROL t
279: SNODE(2]

281 -DEFAULT -09,00 /* NORMAL (REGISTER FILE NODE)"282 -RHO 0900 I' NORMAL (REGISTER FILE MODE)*
283 -R8XS OB001 It 8 BlY S SHGIFT REGISTER NODE I
284 -R4X16 - 010 it 4 BY 16 SHIFT REGISTER NODE ~

285RZX32 -0911 I* 29BY 32 SHIFT REGISTER MODE t

2876

288 - I PORT A READ ADDRESS *
289: RDA(S)

291 -DEFAULT - 0900000 /* REGISTER 0 t
292-
293-
294 - /* PORT B READ ADDRESS *
295: RDB(6]

297 -DEFAULT - 09000000 1* REGISTER 0 '
298-
299-
300-

302 - -ADDRESS RAN ONE (FIELD RAMl) - -AND- -ADDRESS RAM TWO (FIELD RAK2) -

304-
305-
306 - RA1411211
307 - A21
308-
309 -DEFAU'LT ;.0200000111101
310 - tCROSSBAR REGISTER SOURCE SELECT t
311: ADD(4]

313 -DEFAULT - 00 ItBL REGISTER SELECTS ISSELF
314 -8SOLD) OXO /SOLD (REGISTER SELECTS TITS SELI*
315 -CNT1 DX03 I' LCT COUNTER #1 ADDRESS OUTPUT'
316 -CNT2 - X5 /~SELECT COUNTER #2 ADDRESS OUTPUT '
317 -CNT3 -0X8 I' SELECT COUNTER #3 ADDRESS OUTPUT t
3168 CNT4 -OXA /* SELEC COUNTER #4 ADDRESS OUTPUT
319 -c EOX-02 I SELECT CwOUmNTRm #1 ROW/=O OUTPUT
320 -RC2 - 04 ItSELECT COUNTER #2 ROW/COL OUTPUT '
321 -RC3 - 07 1SELECT COUNTER #3 ROu/Col. OUTPUT '
322 -RC4 - 09 PSELECT COUNTER #4 RO/COL OUTPUT t
323 I NK - 06 PSELECT IMMEDIAT ADDREBSS/
324 - IOPORT -OXI SELET 10 ADDRESB PORTM
325 - RAMI ORB /t SELECT ADDRESS RAN #1 '
326 - RAN2 - QC /* SELECT ADDRESS RAM #2 '
327 - REGA - OD /t SELECT REOISTER FILE PORT A '

............ .. . . . . . . . -...... ......
Page: 3



Date: 6/30/92 File: CPBi FI
!iz!: 53964 Last Modified: Fri Feb 21 16:26:02 1992

328 - REGS - 0XE /* SELECT REGISTER FILE PORT B */
329 - DIS - OXF /* DISABLE PORT (REGISTER HOLDS)33 0-
331-332 /* ADDRESS PORT PEASE SELECT '/
333 - ACTRL [ ]334f
335 - DEFAULT - 030 1 PHASE 0 */
336- P0 BO /* PHASE /
337- P1 =OB /* PHASE /338
339-340 -* CROSSBAR REGISTER SOURCE SELECT */
341 - DATA[ 4]
342

343 - DEFAULT - 0XF /* DISABLE PORT (REGISTER HOLDS)
344 - HOLD -X0 /* SOLD REGISTER SELECTS ITS SELF /
345 - CNT1 0X3 I* SELECT COUNTER #1 ADDRESS OUTPUT
346 - CKRT2 = 0X5 /* SELECT COUNTER #2 ADDRESS OUTPUT
347 - CNT3 = 0X8 /* SELECT COUNTER #3 ADDRESS OUTPUT
348 CHT4 -XA /* SELECT COUNTER #4 ADDRESS OUTPUT
349 RCl 0X2 /* SELECT COUNTER #3 ROW/COL OUTPUT */
350 - RC2 " 0X4 /* SELECT COUNTER #2 ROW/COL OUTPUT351 -RC3 - X7 /* SELECT COUNTER #3 ROW/COL OUTPUTYE
352 -RC4 - X9 /* SELECT COUNTER #4 ROW/COL OUTPUT *
353 - IMM - DX6 /* SELECT IMMEDIATE ADDRESS */
354 - IOPORT 0Xl /* SELECT 10 ADDRESS PORT *1
355 - RAMI 0XB /* SELECT ADDRESS RAM #1 /
356 - RAM2 0XC /* SELECT ADDRESS RAM #2 *I
357 REGA = OXD /* SELECT REGISTER FILE PORT A */
358 REGB - OXE /- SELECT REGISTER FILE PORT B '/
359 DIS 0XF /* DISABLE PORT (REGISTER HOLDS) */360- }
361-
362 - /* DATA PORT CONTROL 'I
363- DCTRL[2]
364 -{
365 - DEFAULT - 0B01 /* READ RAM */
366 - READ 0BO1 /* READ RAM N /
367 - WRPO = 0B00 /* WRITE RAM FROM PHASE 0 */
368 - WRPI = 0B10 /* WRITE RAM FROM PHASE 1I
369-
370-
371 -372 - ........ ..... .... .....

374 -

375 - */
376 - BANK(5
377 - ADDEAS- RC
378 - ADDR [5]379 - ADDRC [5]
380 - ADDRD [5]
381 - ADDRE [55]
382-
383 DEFAhTr - O=o00OO
384 - /* CROSSBAR REGISTER SOURCE SELECT */
385- SEL[4]386 f
387 - DEFAULT = /X -P HOLD (REGISTER SELECTS ITS SELF) */
388 - HOLD OXO /* SOLD (REGISTER SELECTS ITS SELFI W /
389 - CUTI 0X3 /* SELECT COUNTER #1 ADDRESS OUTPUT */
390 - CNT2 0X5 /P SELECT COUNTER #2 ADDRESS OUTPUT *I
391 - CNT3 - 0X8 /" SELECT COUNTER #3 ADDRESS OUTPUT */
392 - CNT4 = OXA /* SELECT COUNTER #4 ADDRESS OUTPUT */
393 - RCl - 0X2 /* SELECT COUNTER #1 ROW/COL OUTPUT /
394 - RC2 O 0X4 /* SELECT COUNTER #2 ROW/COL OUTPUT */
395 - RC3 - 0X7 /* SELECT COUNTER #3 ROW/COL OUTPUT */
396 - RC4 0X9 /* SELECT COUNTER #4 ROW/COL OUTPUT */
397 - IMM = 0X6 /* SELECT IMMEDIATE ADDRESS */
398 - IOPORT = 0Xl /* SELECT 10 ADDRESS PORT /
399 - RAM1 = 0XE /* SELECT ADDRESS RAM #1 *1
400 - RAM2 = OXC /* SELECT ADDRESS RAN #2 */
401 - REGA - OXD /* SELECT REGISTER FILE PORT A */
402 - REGB - 0XE /* SELECT REGISTER FILE PORT B */
403- DIS O 0XF /* DISABLE PORT (REGISTER HOLDS) */404- }
405 -
406 - /* ADDRESS PORT PHASE SELECT */
407- PSEL[1]408-
409 - DEFAULT - 0 /0 PEASE 0 'I
410- P0 =0B0 /* PHASE 0*/
411- P1 B1 /* PEASE1*/
412-
413-
414 -
415 -/*
416 -=CACHE MEMORY CONTROL (FIELD CACHE) -
417 ................ lllllllm ..............

417-418 - *

419 -
420 - CACHE[4]
421 - (
422 -DEFALT = 031111
423 - /* CACHE WRITE INSTRUCTIONS *I
424- WRIZT(2j425-
426 - DEFAULT - 0B11 P No OPERATION */
427 - WRR- 0201 I' WRITE REAL */
428 - WRI OBI 0 P WRITE IMAGINARY */
429 W-RI - 0300 P WRITE REAL AND IMAGINARY '/430- }
431 -
432 - /* CAMHE READ INSTRUCTIONS /
433 - READ[2]
434-
435 - DEFAULT 0311 /* no OPERATION */
436 - RDA 0U01 /* READ RAM A */
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437 - RDB OB1O /* READ BANK B */
438 - ROAD OB000 /* READ BANKS A AND B 1
439-
440-
441 -
442 - /* ............................. ..........

443 - - AUXILIARY MEMORY CONTROL (FIELD AUX) =
444 ............................-.........
445 -
446 -
447 - AUX[(4
448 {
449 DEFAULT = 03111
450 - /* AUXILIARY WRITE INSTRUCTIONS /
451 - WRITE(21
452-
453 - DEFAULT 0B11 /* NO OPERATION.*/
454 - WE -OB01 /* WRITE REAL */
455 - WRI OB10 /* WRITE IMAGINARY
456 - WRRI 0300 /* WRITE REAL AND IMAGINARY /
457- }
458 -
459 /* AUXILIARY READ INSTRUCTIONS */
460 - RAD[21461- {462 - DEFAULT B 0311 I* NO OPERATION */

463 - RDR 0BOI /* READ REAL */
464 - RDI - OB10 /9 READ IMAGINARY /
465 - RDRI - 0B00 /* READ REAL AND IMAGINARY */
466-
467- }
468 -
469 /* ...... .. .. ... ............... .....

470 - m MULTIPLIER ONE (FIELD Ml) -AND- m MULTIPLIER TWO (FIELD 142) -
471 -........ ............ ...................

472 - '/
473 -
474 - M1126
475 M2[261
476 -
477 DEFAULT -0B0000001000000101011000100
478 - CROSSBAR REGISTER SOURCE SELECT
479 - XSEL[4]4e0
480 DEFAULT OX0 /* HOLD 'REGISTER SELECTS IT'S SELF)

482 - HOLD OX0 HOLD (REGISTER SELECTS IT'S SELF)
483 - Ml OXA /* SELECT MULTIPLIER #1 /
484- M2 - OX9 /* SELECT MULTIPLIER #2 */
485- Al OXI /* SELECT ALU #1 */
486 - A2 - 0X2 /* SELECT ALU #2 */
487 - AR - OX3 /* SELECT CACHE PORT A REAL */
488 - AI - 0X4 /* SELECT CACHE PORT A IMAGINARY */
489 - BR OX5 /* SELECT CACHE PORT B REAL -/
490 - SI - 016 /* SELECT CACHE PORT B IMAGINARY */
491 - AUXR - OX? /* SELECT AUXILIARY PORT REAL */
492 - AUXZ - 0X8 /* SELECT AUXILIARY PORT IMAGINARY */
493 - IOR - 015 I* SELECT I/o PORT REAL */
494 - 101 - 0XC /* SELECT I/O PORT IMAGINARY *I
495 - REGA - OXD /* SELECT REGISTER FILE PORT A /
496 - REGB OXE 0 * SELECT REGISTER FILE PORT B */
497 - DIS - 0EF /* DISABLE PORT (REGISTER HOLDS) /
498-
499 -
500 - PORT X CONTROL */
501 - XCTRL[4]
502 -
503 - DEFAULT - 0B0001 /* BOLD 'I
504 H HOLD OB0001 /* HOLD S C
505 PONS 8 0B0011 /* PHASE 0 MOST SIGNIFICANT
506 - PimS = 0B1011 /* PHASE I MOST SIGNIFICANT '/
507 - POLS - OB0000 /* PHASE 0 LEAST SIGNIFICANT */
508 - PILS = 03BO00 /* PHASE 1 1EAST SIGNIFICANT */
509- TPORT 0B0100 /* T PORT*/
510-
511 -
512 - /* CROSSBAR REGISTER SOURCE SELECT 'I
513 - YSEL[4j514
515 DEFAULT - OXO /* HOLD 'REGISTER SELECTS IT'S SELF)

516 - HOLD 0X0 * BaOLD( REGISTER SELECTS IT'S SELF)
517 - Ol KA /A SELECT MULTIPLIER #1 "I
518 - M2 OX9 /* SELECT MULTIPLIER #2 */
519- Al OX1 /* ELECT ALU #1'
520 - A2 = OX2 /* SELECT ALU #2 */
521 - AR 0X3 /* SEL3CT CACE PORT A REAL */
522 - Al 0X4 /* SELECT CACHE PORT A IMAGINY /
523 - SR OX5 /* SELECT CACHE PORT B REAL -/
524 - BI - OX /* SELECT CACHE PORT B IMAGINARY */
525 - AUXR OX7 /* SELECT AUXILIARY PORT REAL */
526 - AUXI - 0X8 P SELECT AUXILIARY PORT IMAGINARY /
527 - IOR - 0X8 /* SELCT I/O PORT REAL */
528 - O1 - XC /* PSELECT I/O PORT IMAGINARY *
529 - SGA OlD /* SELECT REGISTER FILE PORT A */
530 - REGi - 013/* SELECT REGISTER FILE PORT B */
531 -DI5 0X /* DISABLE PORT (REGISTER SOLDS) */
532-
533 -534 - /* POR T CO */O
535 -cTCL TR3 O
536- (
537 - DEFAULT - 0B00I /* BOLD */
536 - SOLD 03001 /* BOLD */
539 - Pos o03oll * PBAS 0 MOST SIGNIFICANT
540 - Pin -0111 /* PHASE 1 MOST SIGNIFICANT
541 - P0. 0B000 /* PHASE 0 LEAST SIGNIFICANT */
542 - PIL8 n03100 I* PHASE 1 LEAST SIGNIFICANT ./
543-
544 -
545 - / ImSTRUCTIOUs FOR MULTIPLIERS */
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546 - INS 8]547-

548 - DEFAULT - 0801011000 P NO OPERATION r /
549 - MOP - 0501011000 /* NO OPERATION */
550 -
551 /* FLOATING POINT ARITHMETIC INSTRUCTIONS */

5553 L/* OATING POINT DIVISION */554-
555 -DIV - B00000000 /* X/¥ *556 -DDIV 000000001 /. DP: X/Y
557 -
558 /* FLOATING POINT SQUARE ROOT */

560 - SRT - O000000010 p SQUARE ROOT X */
561 0BSQRTX 000000011 / DP: SQUARE ROOT X
562 -
563 - /* FLOATING POINT MULTIPLICATION WITH WRAPPED OPERANDS */
564 -
565 - MULT - 000000100 WRAPPED X*Y Y/
566 - DMULTWX - 0800000101 /* DP: WRAPPED X*Y */
567 - MULTVY B000000110 /- X*WRAPPED Y */
568 - DMULTVY - 0B00000111 /* DP: X*WRAPPED Y */
569 -
570 - / FLOATING POINT MULT WITH ABSOLUTE VALUE CAPABILITY */
571 -
572 N MULT - O 00001000 /* X*Y *I
573 DMULT - O 00001001 / DP: X*'7 '
574- MULTAY O900001010 /P xY */
575 - DMULTAY 000001011 / OP: X. "I
576 - MULTAX 000001100 X */
577 - DMULTAX 0800001101 /D DP: X "1
578 - MULTA 0500001110 x 1  *1
579 DMULTA 0900001111 P DP: X*Y */580-
581 - FLOATING POINT SUPPORT INSTRUCTIONS */
582 -
583 - X X INPUT RETURNED UNMODIFIED */
584 -
585 - PASS - 000010000 /* X */
586 - DPASS - 0800010001 /. DP: X /
587 -
588 - /* REGISTER ACCESS INSTRUCTIONS */
589 -
590 - FRGM - 001011010 /* FMPY G REGISTER READ */
591 - FRZGW - OOO11011 /* PFY FLAG REGISTER WRITE /
592 - IRGMR 001011100 /* FMY INT GISTER READ /
593 - IRNW - 001011101 /* FM! INT REGISTER WRITE /
594 - MREGMR = 0E01011110 /* FMPY MODE REGISTER READ */
595- MREGMW - 0501011111 P* FRPY MODE REGISTER WRITE */
596 -
597 - * INTEGER ARITHMETIC INSTRUCTIONS ''
598 -
599 - /* INTEGER MULTIPLICATION INSTRUCTIONS */
600 -
601 - IMULT - 0B11111000 /* UNSIGNED X * UNSIGNED Y */
602 - IMULTSX - OB11111001 /* SIGNED X * UNSz Y '/
603 - IULTSY - 0511111010 /* UNSIGNED X * SIGNED Y /
604 - IMULTS - 0911111011 /* SIGNED X * SIGNED Y */
605 - IMULT - 011111100 /* UNSIGNED X * UNSIGNED Y /
606 - IMUITS 0911111101 /* SIGNED X * UNSIGNED Y /
607 - IMULTHSY B 0811111110 /* UNSIGNED X * SIGNED Y /
608 - IMULTS - 0811111111 /* SIGNED X * SIGNED Y /
609-)
610 -
611 - /* T OUTPUT PORT CONTROL *
612 - ZN(l]
613 - {
614 - DEFAULT - 081 P HOLD Z REGISTER /
615 - BOLD = 0 B1 P HOLD Z REGISTER /
616 - EN OBO /* ENABLE Z REGISTER /
617-
618 -
619- TSEL[2]620 1
621 - DEFAULT - O80 /* OUTPUT LS /
622- LS -000 I* OUTPUT LS
623 - Ma - 0811 /* OUTPUT MS
624 - L - 0801 /* OUTP L TO CROSSaR MS /
625 - MSLS - 0B10 /* OUTPUT MS TO CROSSBAR LS *I
626 -
627-
628 -
629 -" .. ". .
630- - ALU ONE (FIID Al) - -AND- - ALU TWO (FIELD A2)
631 - ..
632 -'
633 - A1127]
634 -

636 - DEFALT - 0B000000010000001001011000100
637 - * CROSSAR REGISTER SOURCE SELECT /
630 - XSE1,1[4
639 -
640 - DEFAULT - 0X0 H HOLD (REGISTER SELECTS IT'S SELF) '/
641 - OL 0X0 B OLD (REGISTER SELECTS IT' SELF) /
642 - Ml 0XA P* SELECT MULTIPLIER #I */
643 MZ- 0X9 / SELECT MULTIPLIER 12 *I
644- Al OX /* SELECT ALU #1/
645 - A2 , 0X2 P* SELECT ALU 12 */
646 - A - 07,3 /* SELECT CACHE PORT A RAL
647 - Al - 0X4 * SELECT CAR PORT A IMAGINARY /
648 - BR 0 0X5 /* SELECT CACHE PORT B REAL */
649 - 91 - 0X6 /* SILECT CACHE PORT B IMAGINARY */
650 - AUXR - OX7 /* SELECT AUXILIARY PORT REAL */
651 - AUXI - 6/* SELE AUXILA POT IMAGINARY /
652 - IOR - 08 SELECT I/O PORT REAL *1
653 - 101 - OXC P SELECT 1/O PORT IMAGIARY
654- RE" 0XD P SEZLCT RMOISTER FILE PORT A */
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655 - REGB, OXE /* SELECT REGISTER FILE PORT B */
656 - 0I8 OXF /* DISABLE PORT (REGISTER HOLDS) */
657-
658 -
659 - /* PORT X CONTROL */
660 - XCTRL(4]
661-
662 - DEFAULT - 0B0001 /* HOLD "/
663 - HOLD - 0B0001 /* HOLD /
664 - POMS - 0B0011 /* PHASE 0 MOST SIGNIFICANT */
665 - P3MS - 0B1011 /* PHASE 1 MOST SIGNIFICANT */
666 - POLS - 0B0000 /* PHASE 0 LEAST SIGNIFICART */
667 - PILS B01000 /* PHASE 1 LEAST SIGNIFICANT */
668 - TPORT = 0B0100 /* T PORT /
669-
670 -
671 - / CROSSBAR REGISTER SOURCE SELECT '/
672 - YSEL[4]
673 -
674 - DEFAULT = 0X0 /* HOLD (REGISTER SELECTS IT'S SELF) 0/
675 - HOLD - OXO /* HOLD REGISTER SELECTS IT'S SELF) */
676 - Ml - 0XA /* SELECT MULTIPLIER #1I
677- 142 - 0X9 /* SELECT MULTIPLI3R #2 /
678- Al -OXi / SELECT ALU #*/
679 - A2 - 012 /* SELECT ALU #2 "/
680 - AR - 0X3 /* SELECT CACHE PORT A REAL 'I
681 - AI = 0X4 * SELECT CACHE PORT A IMAGINARY *I
682 - BR - 0X5 /' SELECT CACHE PORT B REAL */
683 - BI - 0X6 /* SELECT CACHE PORT B IMAGINARY */
684 - AUXR - 0X7 /* SELECT AUXILIARY PORT REAL */
685 - AUXI - 0X8 /* SELECT AUXILIARY PORT IMAGINARY 'I
686 - IOR - 018 /* SELECT IO PORT REAL */
687 - 101 - OXC /* SELECT I/O PORT IMAGINARY */
688 - REGA OXD /* SELECT REGISTER FILE PORT A '1
689 - REGB O XE /* SELECT REGISTER FILE PORT B
690 - DIS - OXF /* DISABLE PORT (REGISTER HOLDS) 0/
691-
692 -
693 - /* PORT Y CONTROL */
694- YCTRL[3]695-
696 - DEFAULT - 08001 /* HOLD */
697 - HOLD - 0B001 /* HOLD 0/
698 - P04S - 0B011 /* PHASE 0 MOST SIGNIFICANT 0/
699 - P134 - 0B111 /* PEASE 1 MOST SIGNIFICANT 0/
700 - POLS - OB000 /* PEASE 0 LEAST SIGNIFICANT */
701 - PiLS B0100 I* PHASE 1 LEAST SIGNIFICANT */
702-
703
704 - I* Y SELECT INTERNAL TO THE ALU 0/
705- IYSEL[I]706- (
707 - DEFAULT - 080 I Y REGISTER /
708- ZREG OB1 / Z REGISTER*/
709-
710 -
711 - /* ALU INSTRUCTIONS 0/
712 - INSC[]
713 - {
714 - DEFAULT - 0B01011000 /* NO OPERATION 0/
715 - HOP - 0B01011000 /* NO OPERATION t/
716
717 - /* FLOATING POINT ARITHMETIC INSTRUCTIONS 0/
718
719 - /* MAXIMUM/MINIJ4M "/
720 -
721 - MIN - 0B00100100 I* FLOATING POINT MIN 0/
722 - DMIN - 0B00100101 /* DP: FLOATING POINT MIN 0/
723 - MAX B 0800100110 /* FLOATING POINT MAX /
724 - DMAX OBOOLOO111 /* DP: FLOATING POINT MAX 0/
725 -
726 - I ABSOLUTE, NEGATE OR PASS X OPERAND I
727
728 - ABaX - 0B00101000 / IXI "/
729 - DAB5X 0B00101001 /* DP: X /
730 - NEGX 0800101010 /* -x /
731 - DONGX B 0300101011 /* DP: -X /
732 - PASSX - 0B00101100 /* X 'I
733 DPASSX - 0B00101101 /* DP: X 0/734-
735 - /* ADDITION AND SUNTRACTION /
736
737 - ADD - 0100110000 /* X+Y
738 - DADD OBO30110001 /* DP: X*Y 'I
739 - SUBTR B 0300110010 /4 X-Y 0/
740 - DSUBTR - 0300110011 /* DP: X-Y */
741 - SUIX - 0300110100 /I Y-X 0/

742 -
SUBX 

OB000110101 /* DP:

743 - ADDA -0300111000 /0 I. '/
744 - DADDA " 0B00111001 /I DP: + Y
745 - 8URA 0B00111010 / Y /
746 -DaumA 0300111011 /- DF: IX-Y
747 - 3UVXA 0300111100 /S IY- Ix /748 - DSUBXA 0B00111101 /P P: O Y-IX /
749 -
750 - /* FLOATING POINT SUPPORT INSTRUCTIONS /
751 -
752- /* SCALEO/
753 -
754 SCALE " 0B00100000 /* RXPONET X Y
755 DOCALZ " 0B00100001 /* DP: XPOENT Y X /
756 -
757 /* MERGE (CONCATENATE) /758-
759 - HER= 0300100010 P SIGN X, WOO T YARTI•A X "/
760 - Dm3303 ' 0300100011 /P DPF SIGN ZEXPQSENT YM SA X 0/
761 -
762 - /* KORALIXEE */
763 -
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764 - N0B - 0300101110 / NORMALIZE X */765 -
766 -/* COMPARE
767-768 -•R6 0B00110110 / X,Y
769 -DCMR O B00110111 /DP: X,¥_.
770 - OPRA - 000111110 / li
771 - DCMPRA - 0B00111111 P OF: X
772 -
773 - /* LOGICALLY LEFT SHIFT 4 PLACES AND ADD BITS SHOWN */774-
775 - PASSO - 0B01000000 /* X * 16 + 0 */
776 PASSI - 0B01000001 /* X 16 + 1 /
777 PASS2 - OB01000010 /- X * 16 +2
778 - PAS3 0B01000011 /- X 16 + 3 /
779 - PASS4 B001000100 /* X 16 + 4 /
780 PASS5 - 0B01000101 /* X * 16 + 5 "/
781 PASS6 - OB01000110 /* X 16 + 6
782 PASS7 B0010oo0111 /P X 16 7 */
783 PA-8 - 0B01001000 /P X * 16 + 8 */
784 - PASS9 - 0B01001001 /* X * 16 + 9 /
785 - PASSO - 0B01001010 / * 16 + 10 */
786 - PASSl - 0B01001011 /- X * 16 + 11 '/
787 - PASS12 - 0B01001100 /* X 16 + 12
788- PASSl3 0B01001101 /P X * 16 + 13 */
789 - PAS14 - 0B01001110 /* X * 16 + 14 */
790 - PASS15 0B01001111 /* X 16 + 15 -/
791 -
792 /* REGISTER ACCESS INSTRUCTIONS /
793
794 SCREGR - 0B01010000 /* SC REGISTER READ */
795 SCREGW - 0B01010001 /* SC REGISTER WRITE */
796 - FREGAR - 0B01010010 /* FALU FLAG REGISTER READ /
797 - FREGAW - 0B01010011 /* PALU FLAG REGISTER WRITE /
798 - IREGAR - 0B01010100 /* PALU INT REGISTER READ */
799 - IREGAW - 0B01010101 /* PALU INT REGISTER WRITE 0/
800 - MREGAR - 0B01010110 /* PALU MODE REGISTER READ */
801 - MREGAW B001010111 /* FALU MODE REGISTER WRITE /
802 -
803 - /* CLEAR FLAG REGISTER */
804 -
805 - CLRFLAG - 0B01011001 /* CLEAR FLAG REGISTER /
806 -
807 - /* CONVERSION INSTRUCTIONS */
808 -
809 - /* FLOATING POINT TO INTEGER AND VISA VERSA CONVERSION *
810 -
811 - FCUI - 0B01100000 /* S -> 32-BIT UNSIGNED INTEGER */
812 - DFCUI - 0301100001 /* DP - 32-BIT UNSIGNED INTEGER /
813 - FCSI - 0B01100010 /* aP -> 32-BIT SIGNED INTEGER /
814 - DFCSI 0B01100011 /* DP - 32-BIT SIGNED INTEGER /
815 - UICF - OB01100100 /* SP <- 32-BIT UNSIGNED INTEGER */
816 - UICDF B001100101 /* DP 4- 32-BIT UNSIGNED INTEGER /
817 - SICF - 0B01100110 /* SP 4- 32-BIT SIGNED INTEGER /
818 - SICDF 0B01100111 /* OP <- 32-BIT SIGNED INTEGER */
819 - FCLUI B 0301101000 /* S -> 64-BIT UNSIGNED INTEGER */
820 - DPCLUI - 0B01101001 /* O -O 64-BIT UNSIGNED INTEGER /
821 - FCLSI B001101010 /* SP -> 64-BIT SIGNED INTEGER 0/
822 - DFCLSI - 0B01101011 /* DP -6 84-BIT SIGNED INTEGER /
823 - LUICF - OB01101100 /* SP <- 64-BIT UNSIGNED INTEGER /
824 - LUICDF B 0301101101 /- DP <- 64-BIT UNSIGNED INTEGER *1
825 - LSICF - 0B01101110 /* SP 4- 64-BIT SIGNED INTEGER /
826 - LSICDF B001101111 /* DP <- 64-BIT SIGNED INTEGER 0/
827 - FCUIT - OB01110000 /P SP -> 32-BIT UNSIGNED INTEGER N(RED TO 0) 0/
828 - DFCUIT 0B01110001 /* OP > 32-BIT UNSIGNED IN RD TO 0
829 - FCSIT - 0B01110010 /* S -> 32-BIT SIGNED INTEGER (D TO 0
830 - DFCSIT - 0B01110011 /* DP -> 32-BIT SIGNED INTEGER RD TO 0 /
831 - FCLUIT - 0B01111000 /* sF -> 64-BIT UNSIGNED IN=TEjGEND TO0/
832- DFCLUIT - O301111001 /* DP -D 64-BIT UNSIGNED INTEGER TO0)
833 - FCLSIT - 0301111010 / SF -> 64-BIT SIGNED INTEGER TO 0
834 - DFCLSIT - 0B01111011 /* D -D 64-BIT SIGNED INTEGER ( TO 0 /
835 -
836 - /* CONVERT WRAPPED X INPST TO DENO4MALIZED NUMBER 0
837 -
838 - WDN - 0B01110100 /* WRAPPED -> DENO
839 - D 0B01110101 /* DO: WRAPPED DENORM
840 -
841 - /FLOATING POINT CONVERSION *
842 -
843 - SDF - 0301110110 / SP -D OF '/
844 - DSDF - OB01110111 /D OP -> 8P /
845 -
846 - FFI 0301111100 /* r -> PF FOr INTEGER
847 - DFI 0301111101 /* DrP DP FORMAT INTEGER
848 - FPIT - 0301111110 P S SF FOmA INTEGER (RED TO 0) /
849 - DFIT 0301111111 /* DO DP FORMAT INTEGER (ND TO 0
850 -
851 - / INTEGER ARITHMETIC INSTRUCTIONS /
852 -
853 - /* INTEGER ADDITIO AND SUBTRACTION /
854 -
855 - IAtD - 0311100000 P* x + Y
856 - LIADD - OB10100000 /0 L: X + Y
857 - I8( - 0B11100101 P x - Y/
85s - LISUB 0310100101 P L: X -Y Y
859 - IS3 = 0B11100110 /* Y - X /
860 - LISUBX - 0B10100110 /* L: Y X - /
861 - IADDP - 031100100 /* X ÷ 1 1 +
862 - LIADP - 010100100 /* L: X + Y + I
863 - ISUM 0B11100001 /* x - Y -1 /
864 - LIBSU 0B10100001 /* L: X - Y - 1/
865- ISBM3 - 03B1100010 /P Y X x - 1
866 LIBUR)M -0310100010 /* L: Y - X -1 I
867- IA-DC O-31 01000 /* X + C + A /
066- LIADDC - 0310101000 L L: X + Y+ CARRY .1
869- IBM -0211101001 X - Y - CARRY /
870 - LISUBC - OB10101001 L: X - Y - CARRY M /
871 - IS1 " 0311101010 / 1 - X - CARRY
872 - LISUBXC - 0310101010 /* Ls Y - X - CARRY
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873 -
874- INTEGERNEGATE,NEGATEWITH CARRY, ABSOLUTE
875 -

76 -INEGC - 0B1101011 /* -X CARRY

87 -IEG 03101000110 * SIG-X CEDR

878- IABSX oBl11001o11 /*879 - LIABSX 0B101010 / L: U D
89 ING 03B11001110 /* NI D
892 - LINEGX 0B10100111 /* L: -xN E/
882 -
883 / IrnTEGER MAXINUM/INIMUMIO/
884 -
8a8 ISMAX -0EllANL0 /* SIGNED MAX /886 - LISMAJX OB10000010 /- L! SIGNED MAX "

887 - IMIN 0B11010000 /* SIGNED O IN /
899 - LISMIN - 0B100110 /* L: SIGNED IN /
889 - IOlmX = 0310100101 /* UNSIGNED MAX /
890 - LIUMAX 0B1001010 /* L: UNSIGNED MAX /
891 - IUMIf 0B11001110 /* UNSIGED MIN
892 - LIURIN 0BI0001110 /* L: RSIGNED MIN
893-
894 -/* INTEGER BOOLEA INSTRUCTIONS895-
890 L /* BOOLEAN LOGIC 0L897-
898 - INAND - 0B11010000 /* /X OR /Y 'I
999 - LIAND - 0810010100 /* L: IX OR I /Y
900 - ION1 - 0311010001 / /X ORD Y /
901 - LIORX - 0B10010001 * L: /X OR Y 'I
902 - IORY - 0B11010010 /* X OR /Y /
903 - LIORN 0B10010010 /* L: X OR /Y */
904 - ION - 03B1010011 X OR Y */905 -LIOR 0R10010011 /** L: X OR Y *
906 - LIANDNX - 03101011 L / X AND /Y *907 -LIADRY oslo01010o /* L: X, AND 1Y
908 - 0 = 03B1101011 /* X AM Y
909 - LIAODR 0B10010101 /* L: X ANRD Y I
910 - INOR 0B11010110 /* IX AND /Y
911 - LINOR 031000110 I* L: /X AND /Y I

9182 ISETM - 0311011000 . /x3 ALL OY S*

913 - LIADE X B 03100111 I L: /AND Yyt /
914 - I"OR - 0l1011010 X XOR
915 - LIXNOR 0310011110 I* L:X XZOR / YX
916 - IXOR 0B11011010 /* X XOR Y
917 - LIMXB - 0B10011111 /* L:X XORZ YL
918 - ISET 0BI011011 /a Z - A
919 - LISET 0310011000 /I L: Z - ONEX OE
926 - IK 0311011001 /* Z - L*/
921 - LINOTX 0310011001 L: Z - /X EO

923 - LIPASSY OB0011010 * L: - Y*/924 -IPASSX 0Bl1011011 /* Z X *x
925 -LIPASSX - B10011011 /* L: Z - X *
926 -ICLR - Bl1011100 /* Z - ALL ZEROS
927 LICLR 0B10011100 /* L: Z- LZEO
928 - ZNOTY -OBI2011101 /* Z */
929 - LINOTY - 0B10011101 /* L: Z - /Y
930 -
931 - /* INTEGER SHIFT AND ROTATE INSTRUCTIONS 'I
932 -
933 - /* INTEGER SHIFT 'I
934 -
935 - LSSX - 0B11110000 /P LOGICAL SHIFT X W/STICKY BIT */
936 - LLSSX - 0B10110000 /* L: LOGICAL SHIFTX W/STICKY BIT */
937 - LaX - 0Bll10001 /* LOGICAL SHIFTX X/
938 - LLSX - 0B10110001 /* L: LOGICAL SHIFT X */
939 -
940 - /* ARITHMETIC SHIFT */
941 -
942 - AS - 0B11110010 /* ARITHMETIC SHIFTX X/
943 - LAS 0B10110010 /* L: ARITHMETIC SHIFT X */
944 -
945 /* ROTATE X BY THE SIGNED TWO'S COMLEMT
946 NUMBER IN THE SHIFT COUNT (SC) REGISTER 'I
947 -
948 - ROTX - 0B11110011 /* ROTATE X */
949 - LROTX B010110011 /* L: ROTATEX *X
950 -
951 - /* CONCANTENATE AND ROTATE BY THE SIGNED TWO'S COMPLEMENT
952 - NUMBER IN THE SHIFT COUNT (SC) REGISTER '/
953 -
954 - ROTC - 0B11110100 /* ROTATE TIX (COUCATENATED)
955 - LROTC 0010110100 /* L= ROTATE Y X (CONCATENATED) 'I
956 -
957 - P BIT-REVERSE AND CONCAITEIATE WITH A NOU-BIT-REVERSED X 'I
958 -
959 - BITR - 0B11110101 /* ROTATE BIT REVERSED Xix '/
960 -
961 - /* INTEGER SC REGISTER INSTRUCTIONS */
962-
963 - ADDSC - 0211110110 I' S,8C <- X-+ SC/*/
964 -REGSC - 0B11110111 /* ZSC <- SC
965
966 -* T OUTPUT PONT CONTROL 'I
967- ZEN[1]
968 -{
969 - DEFAULT - 031 /* BOLD Z REGISTER */
970 - BOLD * 0B1 /* HOLD Z REGISTER */
971 - EN - 030 /* ENABLE Z REGISTER */
972-
973-
974- TBL[(23
975 -
976 - DEFAULT 0300 /* OUTPUT LS /
977 - L 0BO0 /* OUTPUT LS 'I
978 - MS a 0B11 /* OUTPUT MS */979 - ZJm8 0B01 /* OUTPUT LS To CROSSB•ARN go /
900 pi 02 O10 /* OUTPUT MS TO CRSSA LS *
981- )

......l... l.. •.l.l ll ll........ .. e n m .. nin
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982- }
983 -

984 -. /
985 - :-IOEDAEDTA(FIELD 1MM) =
986 ----------------------------- •.. -- m--
987 -
988 -
990 -

991 DEFA -T 031
992- /*ENABLE FOR IMMEDIATE DATA REGISTER */
993 - CTRL1]
994-
995 -DEFAULT =B
996 EN O /* ENABLE DATA REGISTER
9971- DIS 0B1
998-
999-

1000 -1001 - * ............................ a
1001-21002 - -DATA REGISTER FILE (FiELD BEG)-
1003 -
1004 - '/
1005 -
1006 REG[36]
1007 -
1008 DEFAULT - 0X000000000
1009 : /o PORT A INPUT SOURCE '/1010 AREL[5)1011 -

1012- DEFAULT = 0300000 /* NO OPERATION /
1013 - MOP -0300000 I NO OPERATION /
1014 - CLEAR - 0300001 I' CLEAR REGISTER (ALL EOIW)S */
1015 - Ml 0310101 /* SELECT MULTIPLIER #1
1016 - K2 0310011 /* SELECT MULTIPLIER #2 */
1017 - Al 0300011 /* SELECT ALU #1 *I
1018 - A2 0300101 /* SELECT ALU #2 'I
1019 - AR B000111 /* SELECT CACHE POaT A REAL V
1020 - AI - 0B01001 /* SELECT CACHE PORT A IMAGINARY */
1021 - BR = 0301011 /* SELECT CACHE PORT B REAL */
1022 - BI 0B01101 /* SELECT CAHE PORT B IMAGINARY */
1023 - AUXR - 0B01111 /* SELECT AUXILIARY PORT REAL */
1024 - AUXI 0B10001 /I SELECT AUXILIARY PORT IMAGINARY */
1025 - IOR 0B10111 /* SELECT 1/O PORT REAL */
1026 - 101 0311001 /* SELECT I/O PONr IMAGINARY '/
1027 - REGA 0B11011 /* SELECT REGISTER FILE PORT A /
1028 - REGB 0B11101 /* SELECT REGISTER FILE PORT B /
1029 SET 0B11111 /* SET REGISTER (ALL ONES) /1030- }
1031 -
1032 - 1' PORT A WRITE ADDRESS *
1033 - WRA[6
1034 - {
1035- DEFAULT - 03000000 I* REGISTER 0 '/
1036-
1037 -
1038 - /* PORT B INPUT SOURCE */
1039 - BSEL[5]1040- {
1041 - DEFAULT - 0300000 /* NO OPERATION */
1042 - NOP 0300000 /* NO OPERATION */
1043 - CLEAR B 0300001 /* CLEAR REGISTER (ALL ZEROS) */
1044 - Ml 0310101 /* SELECT MULTIPLIER 61 *1
1045 - M2 0310011 /* SELECT MULTIPLIER #2 */
1046 - Al 0300011 I' SELECT ALU #1 *
1047 - A2 0B00101 /* SELECT ALU #2 */
1048 - AR - 0B00111 P SELECT CACHE PONT A REAL */
1049 - Al - 0301001 /* SELECT CACHE PORT A IMAGINARY */
1050- BR 0B01011 /* SELECT CACHE P0ORT B REAL */
1051 - 3B - 0301101 /* SELECT CACHE PORT B IMAGINARY */
1052 - AUXR B001111 /* SELECT AUXILIARY PORT REAL */
1053 - AUXI - 0B10001 I' SELECT AUXILIARY PORT MAGINARY '/
1054 - IOR - 0310111 I' SELECT I/O PORT REAL */
1055 - O0I 0311001 /* SELECT I/O PORT IMAGINARY '/
1056 - REGA - 0B11011 /* SELECT REGISTER FILE PORT A '/
1057 - REGB - 0B11101 /* SELECT REGISTER FILE PORT B 'I
1058 - SET B011111 /* SET REGISTER (ALL ONES) '/
1059 -
1060-
1061 - /* PORT B WRITE ADDRESS 'I
1062 -R•16]1063- (
1064 - DEFAULT - 0BOO0000 /* REGISTER 0 */
1065-
1066 -
1067 - /' SHIFT MODE CONTROL 'I
1068 SICOE[2]1069 -
1070 - DEFAULT - OB00 / NORMAL (REGISTER FILE NODE) V
1071 - BEG - 0B00 /* NORMAL (REGISTER FILE RODE) 'I
1072 - R8X8 - 0301 1' 8 BY 8 SHIFT REGISTER MODE *I
1073 - R4X16 - 0B10 P* 4 BY 16 SHIFT REGISTER RODE 'I
1074- R2X32 -0311 /I 2 BY 32 SHIFT REGISTER MODE 'I
1075 -
1076-
1077 - PORT A READ ADDRESS */
1078 - D[61
1079 - {
1080- DEFAULT - 03000000 /* REGISTER 0 V
1081 -
1062-
1083 - /* PORT 3 READ ADDRESS */
1084 - RD3[6)
1085-
1086- DEFAULT - 0B000000 /* REGISTER 0 'I1087- )
10988
1089100-/

1-------"------ ---------- -: 10
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1091 - MEMORY WRITE PORTS (FIELD MWR) -
1092 -.................................
1093 -
1094 -
1095 - MWR[12]1096- -

1097 DEFAULT - 0B111100111100
1098 - /* CROSSBAR REGISTER SOURCE SELECT */
1099 - RSEL[ 4]
1100- {
1101 - DEFAULT OXO /* HOLD (REGISTER SELECTS IT'S SELF
1102 - SOLD OXO /* HOLD (REGISTER SELECTS IT'S SELF) R /
1103 - Ml OXA /* SELECT MULTIPLIER #1 */
1104 - M2 o0X9 / SELECT MULTIPLIER #2 */
1105- Al 0X1 I* SELECT ALU #1 */
1106- A2 0X2 /* SELECT ALU #2 '/
1107 - AR - 0X3 /* SELECT CACHE PORT A REAL */
1108 - Al - 0X4 /* SELECT CACHE PORT A IMAGINARY */
1109 - DR - 0X5 /* SELECT CACHE PORT B REAL */
1110 - BI - 0X6 /* SELECT CACHE PORT B IMAGINARY */
1111 - AUXR 0X7 O * SELECT AUXILIARY PORT REAL */
1112 - AUXI = aXe /* SELECT AUXILIARY PORT IMAGINARY -/
1113 - 1OR = 0XB /* SELECT I/O PORT REAL */
1114 - 10I 0XC /* SELECT I/O PORT IMAGINARY '/
1115 - REGA OXD /* SELECT REGISTER FILE PORT A */
1116 - REGB OXE /* SELECT REGISTER FILE PORT B
1117 - DIS i 0X /* DISABLE PORT (REGISTER HOLDS) */
1118-
1119 -
1120 - /* REAL PORT OUTPUT CONTROL */
1121 - RCTRL[2]
1122 -
1123 - DEFAULT - 0B00 /* PHASE 0 LEAST SIGNIFICANT */
1124 - POLE = 0B00 /* PHASE 0 LEAST SIGNIFICANT */
1125 - PILS O HIO /* PHASE 1 LEAST SIGNIFICANT */
1126 - PONS i 0B00 /* PHASE 0 MOST SIGNIFICANT */
1127 - PiMS " 0B10 /* PHASE 1 MOST SIGNIFICANT */
1128-
1129 -
1130 - /* CROSSBAR REGISTER SOURCE SELECT */
1131- ISEL[4J
1132 - D
1133 - DFAULT - X/* HOLD (REGISTER SELECTS IT'S SELF) */1134 -HOLD - X0 /*HOLD (REGISTER SELECTS IT'S5 SELF *
1135 - M1 OXA /* SELECT MULTIPLIER #1 /
1136 - M2 - 0X9 /* SELECT MULTIPLIER #2 */
1137- A - OXI /* SELECT ALU #1*/
1138 - A2 i 0X2 /* SELECT ALU #2 */
1139 - AR - 0X3 /* SELECT CACHE PORT A REAL '/
1140 - AI - 0X4 /* SELECT CACHE PORT A IMAGINARY */
1141 - BR OX5 /* SELECT CACHE PORT B REAL -/
1142 - SI - 0X6 /* SELECT CACHE PORT B IMAGINARY */
1143 - AUX!R OX7 /* SELECT AUXILIARY PORT REAL */
1144 - AUXI - 0X8 /* SELECT AUXILIARY PORT IMAGINARY '/
1145 - IOR XEB /* SELECT 1/O PORT REAL */
1146 - 101 OXC /* SELECT 1/0 PORT IMAGIRARY i,
1147 - REGA - OXD /* SELECT REGISTER FILE PORT A */
1148 - REGB " 0XE /* SELECT REGISTER FILE PORT B */
1149- DIS - 0XF /* DISABLE PORT (REGISTER HOLDS) */1150- }
1151 -
1152 - /* IMAGINARY PORT OUTPUT CONTROL */
1153 - ICTR,[2]
1154-
1155 - DEFAULT 0B00 /* PHASE 0 LEAST SIGNIFICANT */
1156 - POLS 0300 /* PHASE 0 LEAST SIGNIFICANT */
1157 - PILS 0B10 /* PHASE 1 LEAST SIGNIFICANT */
1158 - POMS 0300 /* PHASE 0 MOST SIGNIFICANT */
1159 - PiMS B010 /* PHASE 1 MOST SIGNIFICANT */
1160-
1161 -
1162 -
1163 - / -
1164 - PROCESSOR ADDRESS PORTS (FIELDS PADDRA-PADDRD) -
1165 -.................................................
1166 -6/
1167 -
1168 - PADDRA 161
1169 - PADDRB [61
1170 PADDRC L

6
]

1171 - PADDUD [6]
1172-
1173 DEFAULT - 03111100
1174 - / CROSSBAR REGISTER SOURCE SELECT '/
1175- SEL[4]
1176-
1177- DEFAULT OXF ?* DISABLE PORT (REGISTER HOLDS) )
1178 - BOLD 0X0 /* BOLD (REGISTER SELECTS IT'S SELF) '/
1179 - MI - OXA /* SELECT MULTIPLIER #1 */
1180 - 142 OX9 P SELECT MULTIPLIER *2 *#
1181 - A1 OX1 / SELECT ALU #1 */
1182 - A2 0X2 / SELECT ALU 02 */
1183 - AR - 0X3 /* SELECT CACEM PORT A REAL */
1184 -A OX4 /* SELECT CACHE PORT A IMAGINARY */
1185 - BR - 0X5 /* SELECT CACHE PORT B REAL */
1186 - BI 02(6 /* SELECT CACHE PORT B IMAGINARY '/
1187 - AUXR " 0X7 /* SELECT AUXILIARY PORT REAL */
1186 - AUXI - 0(8 /* SELECT AUXILIARY PORT IMAGINARY "/
1189 - ION - 0XS/* SELECT I/O PORT REAL */
1190 - Ol 0XC /6 SELECT I/O PORT IMAGINARY */
1191 - EA " 0 /W* SELECT REGISTER FILE PORT A ./
1192 - RGSB OXE /* SELECT REGISTER FILE PORT B D
1193: DIS D 0XF / DISABLE PORT (REGISTER HOLDS) /
1194- }
1195 -
1196 - /* PORT OUTPUT CONTROL */
1197- CTRL(211190 - {
1199 - DEFAULT 0B00 /* PHASE 0 LEAST SIGNIFICANT /
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... ............ =.......1200 - PO BD PHAS E 0 LEAST SIGNIFICANT1201 -P1 OB10 / PHASE I LEAST SIGNIFICANT *
1202 -
1203 -
1204 -

120 - I/ R.61208 -*
1209-
1210 - IOR[6]
1211 101[6]
1212 -
1213 DEFAULT B h0B1111001214 -C/* SSBAR REGISTER SOURCE SELECT *
1215 - SEL[4]
1216 11217 -DEFAULT O XF /* DISABLE PONT (REGISTER HOLDS) *1218 HOLD 0X0 /* HOLD (REGISTER SELECTS IT'S SELF) *
1219 -M 0XA /* SELECT MULTIPLIER #1 */1220 -M2 D X9 /* SELECT MULTIPLIER #2 *
1221- Al -OX /* SELECT ALU #1*/
1222 -A2 X2 /* SELECT ALU #21223 -AR = X3 /* SELECT CACHE PORT A REAL *
1224 -AI G X4 /* SELECT CACHE PORT A IMAGINARY *
1225 - BR 0X5 /* SELECT CACHE PORTB REAL *
1226 BI SX6 /* SELECT CACHE PORT B IMAGINARY
1227 AUXE - 0X7 /* SELECT AUXILIARY PORT REAL */
1228 AUXI - OX8 /* SELECT AUXILIARY PORT IMAGINARY */
1229 -IONR =0 /* SELECT 1/0 PONT REAL */
1230 101 XC /* SELECT 1/0 PORT IMAGINARY */
1231 -REGA XD /* SELECT REGISTER FILE PORT A */
1232 REGB SXE /* SELECT REGISTER FILE PORT B */
1233 -DIS XF /* DISABLE PORT (REGISTER HOLDS) */
1234-
1235 -
1236 - /* PORT OUTPUT CONTROL 'I
1237: CTRL[2]
1238{
1239 - DEFAULT - 0B00 /* PHASE 0 LEAST SIGNIFICANT */
1240 - POLS - 0B00 /* PHASE 0 LEAST SIGNIFICANT */
1241 - PILS - 0B10 /* PHASE 1 LEAST SIGNIFICANT */
1242 - POMS B001 /* PHASE 0 MOST SIGNIFICANT '/
1243 - PiMa - 0511 /- PHASE 1 MOST SIGNIFICANT "/
1244 - INLS - ODO0 /* INPI'2 LEAST SIGNIFICANT */
1245 - IRMS - 0901 /* INPUT MOST SIGNIFICANT */
1246-
1247-
1248-
1249 - /* BIT ASSIGNMENTS FOR ADDRESS GENERATOR */
1250 - ASSIGN 344:351 SEQ.INS;
1251 - ASSIGN 728:735 CCS;
1252 - ASSIGN 352:367 RA;
1253 - ASSIGN 736:751 ) RA-
1254 - ASSIGN 237:240,222,223,256,257,205:208,336:339) - IMMADD;
1255 - ASSIGN 621:624 606 607,640,641,589:592,720:723) IMADD;
1256 - ASSIGN 192:204 - &il;
1257 - ASSIGN 576:588 CNTi;
1258 - ASSIGN 209:221 CNT2;
1259 - ASSIGN 593:605 CNT2;
1260 - ASSIGN 224:236 CNT3;
1261 - ASSIGN 608:620 CNT3;
1262 - ASSIGN 241:253 CNT4;
1263 - ASSIGN 625:637 CNT4;
1264 - ASSIGN 302:313,322,323,314:319,368:383) - AREG;
1265 - ASSIGN 686:697,706,707 698:703,752:767) AREG;
1266 - ASSIGN 279:287,320,321S - EiAi;
1267 - ASSIGN 663:671704705) 1
1268 - ASSIGN 268:278 - W2;
1269 - ASSIGN 652:662 - RAM2
1270 - ASSIGN 297:301 ADRC;
1271 - ASSIGN 681:685 ADDRA;
1272 - ASSIGN 292:296 ADDED;
1273 - ASSIGN 676:680) ADDRB;
1274 - ASSIGN 255,288:291) -ANk
1275: ASSIGN 6396 :675) ADDi&;
1276-
1277 - /* BIT ASSIGNMENTS FOR CACHE MEMORY */
1278 - ASSIGN (340,341,724,725) - AUX,
1279 ASSIGN (342,343,726,727) a-Ch;
1280 -
1281 - /* BIT ASSIGNMENTS FOR PROCESSOR '/
1282 - ASSIGN 66:191) M1;
1283 - ASSIGN 50:575 a M1;
1284 - ASSIGN 40:165 M2;
1285 - ASSIGN 24:5495 M2;
1286 - ASSIGN 13:139 - Ai;
1287 - ASSIGN 407:5231 Al;
1288 - ASSIGN 86:112) A2;
1289 - 810 470:496) A;
1290 - ABBIGN 5:5 R ;
1291 ASSIGN 43:4t9) REG;
1292 - ASSIGN 9) -NK;
1293 - ASSIGN 33) - M;
1294 - ASSIGN 37:481 -
1295 -ASSrIG 421:432) - IEE;
1296 - ASSIGN 31:36) PADDRC;
1297 - ASSIGN 415:420) - PADDRA;
1298 - ASSIGN -:0) PADDRD;
1299 - ASSIGN 409:414) - PADDRES;
1300i - ASSIGN 12:4)I0ON;
1301 ASSIGN 403:418 ION;
1302 ASSIGN 1:4! 101;
1303 ASSIGN 101;1304 -
1305 -DOAIN MSEAM[768](0X• )
1306

Page: 12
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------------------------------------------------------------------------------

I /* .......... ..........= .....................== ......====. = ....
2 - THIS FILE INCLUDES HARDWARE CHANGES AS OF MAY 30, 1992 -3 .. . . .. . . -= .. . . . .. . . . . .. . . . .. . . . .
4 - *1
5-
6 -/*IOP Micraprrm sequencer IOPMGA.DEF 2 June 1992 */

7 /*I ASIGNM S FOR MICROSEQUENCER*/
8 - WIDTH 48
9 - PHASES - 1

10 - DEFBIT - 0
11 -
12 - /* ...........................................
13 - DATA BUS SOURCE AND DESTINATION SELECT (FIELD CR)14 .............................== = .......== .......=== ........
14-15 - */
16 -
17
18 LAULT - 0B1000000
19 - DEST [4 /*DESTINATION FOR DATA*/
20- (DEAUT 0B1000
21 - NOW - 08O1000 /*NO WRITE*/
22 - AS - 01100 /*MACRO RAM ADDRESS INPUT REGISTER WRITE*/
23 - CB1 Di011 /*MACRO RAM COUNTER ADDRESS WRITE*/
24 - CARL = O1010 /*MACRO RAM COUNTER ADDRESS INPUT REGISTER WRITE*/
25 - INCR 0B000O /*INCREMENT MACRO RAM ADDRESS*/
26 - MWR = OB1001 /*MACRO RAM WRITE*/
27 - CW - 01101 /*CONTROL REGISTER WRITE*/
28 - )
29- BUS[] /*DATA BUS SOURCE SE */
30- { DEFAULT 0B
31 - NONE 0B000 /*NO BUS SELECTED
32 - PB - 0001 /*MICRPROGRAM RAM*/
33 IMPC 0B010 /-*IB PC INTERFACE*/
34 SIO = 0B011 /*SERIAL 10 (VME) INTERFACE*/
35 - HSIO - OB100 /*HIGH SPEED 10 INTERFACE*/
36 - MRAM - 0B101 /*MACRO RAM*/
37 - HO - 0B111 /*BOOT INSTRUCTION*/
38- )
39 - )
40 -
41 - .. .. = = --------- ====....... === = ........==

42 - REGISTER ADDRESS (FIELD CRA)
43 -
44 - */
45 -
46 -CRA (41
47 {DEFAULT = OBOOO
48- REGAD[4]
49 - {DEFAULT - 0B0000
50 - SOURCE OX0 /*RESOURCES IN USE*/
51 - PCSTAT - OX1 /*PC INTERFACE CONTROL AND 8TATUS*/
52 PCTRAN - 0X2 /*PC TRANSMIT CONTROL*/
53 PCIMK O3 /*PC INTERRUPT MASK*/
54 - SIO - 0X4 /* SERIAL INTERFACE CONTROL-/
55 - SIR = OX5 /*SERIAL INTERFACE TRANSMIT CONTROL*/
56 - SIM = OX6 /*SERIAL TRANSMIT INTERRUPT MASK*/
57 HSIO - OY7 /*HIGH SPEED 10 INTERFACE CONTROL*/
58 CNTA - xe /*A COUNTER DATA TRANSFER COUNT*/
59 - CNT 0X9 / COUNTER DATA TRANSFER COUNT/
60 - NA =AR OXA I*MACRO RAM ADDRESS REGISTER-/
61 - MAMACT = 0)(B / " . COUNTER*/
62 - MRAMCT OXC /* " COUNTER REGIST9R*/
63 - HSIOAC - O /*CPH HSIO ADDRESS COUNTER*/
64 - SIOSA - 05 /:CPH HSIO SYSTEM ADDRESS REGISTER*/
65 - IOPCR -OXF I*IOP CONTROL REGISTER*/
66- )
67 -
68 - }
69 -
70 - /*
71 - = CONDITION SELECT (FIELD CCS )
72 -...............................
73 -
74 -
75 - CCS[6]
76 -
77 - ( DEFAULT - OOOOOOO
78 - CCODE [6]
79 - DEFAULT - OBO00000
80 - PCTFF - 0BO00O00 /*IBM-PC TRANS4IT FULL prAG*/
81 - PCTAF - OB000001 /*IBM-PC TRANSMIT ALMOST FULL FLAG*/
82 - PCTAEF OB000011 /*IBM-PC TRANSMIT HALF FULL FLAG*/
83 - /*IB-PC TRANSMIT ALMOST EMPTY FLAG*/
84 -
85 - PCRFF - O0000101 /*IBM-PC RECEIVE FULL FLAG*/
86 - /*IBM-PC RECEIVE ALMOST FULL FLAG*/
87 - /*IBM-PC RECEIVE HALF FULL FLAG*/
88 - /*IM-PC RECEIVE ALMOST EMPTY FLAG*/
89 - PCREF 010011 /*IBM-PC RECEIVE EMPTY FLAG*/
90 - SIOT 0801010 /*SIO TRANSMIT FULL FLAG*/
91 -*SIO TRANSMIT ALMOST FULL FLAG*/
92 1*-10 TRANSMIT HALF FULL FLAG*/
93 -*810 TRANSMIT ALMOST EMPTY FLAG*/
94 SIOT O001110 /*SIO TRANSMIT EMPTY FLAG*/
95 SIORF - 0B001111 /*SIO RECEIVE FULL FLAG*/
96 - /tSIO RECEIVE ALMOST FULL FLAG*/
97 -1*81 RECEIVE HALF FULL FLAG*/
98 R 0/*SIO RECEIVE ALMOST EMPTY FLAG*/
99 SIORE -B010111 /*SIO RECEIVE EMPTY FLAG*/

100 - ZCNTA - 0B010100 /*COUNTER A ZERO*/
101 - ZCNT - 0B010101 /*COUNTER 9B E */
102 - HSIOR B 09011000 /*HSIO RECEIVE INTERFACE AVAILABLE*/
103 - HSIOT - 0B011001 /*BSIO TRANSMIT INTERFACE AVAILAE-*/
104 - SIOR B 09011010 /*SIO RECEIVE INTERFACE AVAILABLE*/
105 - SIOT 0B011011 /*SIO TRANSMIT INTERFACE AVAIIASLE*/
106 - PCR 0B011100 /*PC RECEIVE INTERFACE AVAILABLE*/
107 - PCT OB011101 /*PC TRANSMIT INTERFACE AVAILABLE*/
108 - HSIOB - 0B011110 /*HSI0 BUS BUSY*/
109 - SYSIO B 09011111 /*SYSTIE INTERRUPT 0 *
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110 - SYSIl . 0B100000 /ISYSTEM INTERRUPT 1*/
111 - SYSI2 = 05100001 /*SYSTEM INTERRUPT 2*/
112 - SYS13 0B100010 /PSYSTEM INTERRUPT 3"/
113 SYS14 B 05100011 /-SYSTEM INTERRUPT 4*/
114 - SYSI5 - 0B100100 /*SYSTEM INTERRUPT 5%/
115 - SYsi6 . 06100101 /*SYSTEM INTERRUPT 6/
116 - SYS17 = 06100110 /-SYSTEM INTERRUPT 7
117-
118-
119 /* ......................................... .........
120- - Microsequencer Instructions & Branch Address/Data =
121 ..... ..... ..... ...... l i i . l i l.........................

122 -
123 -
124 - SEQ[31]/*BE CAREFUL WITH LOWER 24-BITS*/
125 { DEFAULT - OX0000000S 126-127 - INSTR[7] /*MICROSEQUENCER INSTRUCTION*/
128 -{DEFAULT OB05000000
129 - CONT = 060000000 /*CONTINUE*/
130 - IDLE = 0B0010000
131 - IHC B 090100101 /*ENABLE INSTRUCTION HOLD CONTROL*/
132- WCS - 090100000 /*WRITE CONTROL STORE*/
133 - JPCOP - 0B0010101 /-IF FLAG JUMP PC (SELF)*
134 - JPCNP - 090110101 /*IF NOT PLAG JUMP PC(SEF)*/
135 - REL8 - 0B0100110 /*RELATIVE AD6RESS WIDTH 8, TERMINATES IHC*/
136 -
137- /*INTERRUPT CONTROL*/138-
139 - CCIR B 080010001 /*CLEAR CURRENT INTERRUPT*/
140 - CAIR = 060000001 /*CLEAR ALL INTERRUPTS*/
141 - IRMBC = 0B0010011 /*IR MASK BITWISE CLEAR*/
142 - IRMBS B 060010010 /*IR MASK BITWISE SET*/
143 - DISIR B 090010110 /*DIsABLES INTERRUPTS*/
144 - ENAIR = 0B0110110 /*ENABLES INTERRUPTS*/
145 - RDIV = 0B0101101 /*READ IV AND INCREMENT IV POINTER-/
146- WRIV OB0001101 /*WRITE IV AND INCREMENT IV POINTER*/
147 - RTNIR B 090000011 /*RETURN FROM IRTERRUPT-/
148 - SLRIVP = 090011101 /*WRITES STACK LIMIT REGISTER AND IV POINTER*/
149 - SLIR = 060010111 /-SELECTS LATCHED INTERRUPTS*/
150 - STIR B 090110111 /*SELECTS TRANSPARENT INTERRUPTS*/
151
152 - }
153 -
154 - /*

156 ...............................................................l

157 -

159 NOTE: REG bite function as follows:
160 - Bits 23..12 - Data useq branch address or
161 - * write enables for CRA Field
162 - Bits 11..0 - Data, useg branch address or
163 - * data to write for CRA Field *
164- * *
165 - * .+++++ EXCEPTIONS +++++++ *
166-
167 - * CRA Fields 8 & 9 (CNTA & CNTB) use bits 19..0 *
168 - as 20 bit counters *
169- * CRA Field 10 (MRAMAR) uses bits 12..0 as a 13 bit *
170 - * Macro RAM Address *
171 - CRA Field 13 (HSIOAC) uses bits 23..0 as a 24 bit *
172 - CPS 1/0 and memory space address counter *
173- * *
174 -
175 - */
176 - REG[24]177 -{DEFAULT - 0XFFFFFF178 -

179 - LABEL
180 - ENABLES[12/
181 - DEFAULT - OB111111111112
182 ALL - OXFO /*Enables registers 12-19*/
183 NONE OXFFF /*Disables registers 12-23"/
184 - ENR20 0XEFF /*Enables register bit 20"/
185 - ENR19 OXF7F /Enables register bit 19*,/
186 - EWR18 0XFBF /*Enables register bit 18I
187 - ENR17 OXFDF /*Enables register bit 17*/
188 - ENR16 0XPEF /'Enablee register bit 16-/189 - ENR15 OXFF7 /*Enables register bit 15:/
190 - ENR14 OXFFB /IEnables register bit 14"/
?91 - ENR13 OXFFD /:Enables register bit 13"/
192 - ENR12 OXFFE /*Enables register bit 12*/
193 - ESIOINT OXFF4 I*ESIO source/data enable*/
194 - PCXSET . OXFE7 /*PCJXMT clock/data enable*/195-}
196-
197 -DATA[12/
198 -(DEFAULT . B1111121111111
199 - SET - OXFFF
200 - /*Clears enabled data bits 0-11 */201 BIST . 0X000
202 - /*sets enabled data bits 0-11 */
203 - PSD0TA - OXFD7
204 - l'selects real 32 bit data\clk a PCXSET CRA 2 -PCTRAN)*/205 /-selects real 32 bit data\clk a CXSET CRA 5 -SIOTR)
206 - SINT - 0XFF3
207 - /*Enables receive FF (ENR13 CRA 4 -SIO)*/
208 - SIORPN - 0XPDF
209 - /*Enables 8IO receive FF (ENR13 CRA 6 -SIONK)*/
210 - SIOTFF - OXYFE
211 - /*Enables SZO transmit F? JUNR13 CRA 6 -SBI0X)*/
212 - EIOPC - OXFDA
213 - /Selects PC as HSIO source 32 bit real
214- CLE A, data (SIOIRT CRA 7 -HSIO)*/
215 - HIOCPH - OX•CA
216 - /*Selects CPR as BSIO source 32 bit real
217 - CLK A data ( 0SIOINT CRA 7 -H5IO)*/
218 - IO8IO - OXFEA

--------------------------------------------------------------------- = ----
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pill: IOPMGA.DEF

Date: 6/30/92 Last Modified: Tue Jun 02 16:27:38 1992
Size: 10968

/*Selects SIO as Oslo source 32 bit real
219 - CLK A data (HSIOIOT CRA 7 -HSIOL/

221 IN!LIAP0 =0XF8 /*Selects interrupt table 0
222 -- (ER12 CRA 15 -IOPCR)*/

222 - INT1 - 0X120 /*
4

LRIVP -selects IVP 1,

224 -
stack of 20 hex*/

225-
226 -
227 - )
228-
229 -
230 - ASSIGN (41:47) 1 CR;
231 ASSIGN (37:40) -CRA;

232 ASSIGN (31:36) CCS;
233 ASSIGN (0:30) SEQ;
234 -
235 -
236 - DOMAIN IORAM[48] (0:0XFF)

------------------------------------------------------------------------------------------------------------ =.a .....
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Date: 2/ 9/92 File: A:HEXADDR.MAP
Size: 4916 Last Modified: Thu Feb 210 11:50:50 1992

1-
2 - VPH HEX ADDRESS MAP

---- --- - - -

4-
5 - HEX ADDRESS I RESOURCE BSx FUNC. CODES
6- 4

7 - -Fr FF ER BS- f oXAXIi, XU1
8 - I 

BS 
Ik~luxo

9 -4 O00O - 5 FFFF I 020 SRAM i B51 IXxXIO.XOI
10-
11- 8 0 • -8 3FFF 020 4-PORT SRAM 2 I 111, •1i 1 ,OXO,,0&X

14-

15 - C 1000 - C 1FFF i ZORAN #2 1 8S3 I 111,1X01,60A.
16- !
17- 10 00000- 11 FFFF ZORAN BUS #1 PRAM 841 1lI,0Xo,00x

19 -14 0000 - 14 OFFF 7 ZORAN #3 5 B55 111,00.00X

21 -14 1000 - 14 IFFF ZORAN #4 855 111,0x0,00x
227- _______ ____________________ ______

23- I8 0000- 19 FFFF ZORAN BUS #2 PRAM B56 111,0X0.1OX
24 -
25 - IC 0000 VPH STATUS LATCH 1B57) 1l1,OXO,00X

27 - IC 0004 ZORAN RESET LATCH I BS7 I11.,v0x,.0x

29 - 20 0000 C EPH ADDRESS (FE=011 FOR AUGMENTED XFERS) (SELECTABLE AT CPH) I BS6 111,0XX,O0x
30 -
31 - 20 0002 REQUEST (WRITE) OR RELINQUISH (READ) VME BUS (BYTE DR WORD) I BSB I 111,0X0.0OX

-o 20 - 0004 IDHB FLAG (BYTE OR WORD READ BIT DO) 858 111,X(.OOA

35 - 20 0006 AUG4ENTED XFER ADDRESS COUNTER LOAD ADDRESS (WORD) B58 111,0X0,00X

37 - 24 0000 PC INTERFACE FIFO (WORD) ¶ BS9 111,0Xo,0,X
38-
39 - 24 0002 PC INTERFACE STATUS/CONTROL REGISTER IWORD) I BS9 I 111,oxOmOox
40- 4--
41 - 24 0004 PC INTERFACE INTERRUPT REGISTER (WORD) I BS9 11 I,OXO.0ox42 - - ,
43 - 28 0001 - 28 001B MVME6000 LCSR (ODD BYTES) BSIOI 111,0X0,,1)44 - I

45 - 28 0021 - 28 002F MVME60oO GCSR (ODD BYTES) 1810 111,0X0,0ox
46 - __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

47 - 2000 0000 DSACK SRAi ENMULE I
48 -I

49 - 6000 0000 DSACK SRAM DISABLE
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Date: 2/ 9/92 File: A:HExADD2.MAP
Size: 3105 Last Modified: Thu Jan 23 13:45:52 1912

" 2�- VPH HEX ADDRESS MAP
-- -- -- - - -

4-
- HEX ADDRESS I RESOURCE6 -

7 -0 - 7FFF or FFFF EPROM8I
9 -4 (, - 5 FFFF 020 SRAM

10- 4

1 8- 0000 -8 3FFF 020 4-PORT SRAM
12-

13- C 0000 - C OFFF ZORAN #I
14-
15- C 1000 - C IFFF ZORAN #2
16 -

17 -10 000- 11 FFFF ZORAN BUS #1 PRAM
IS- I
19 - 14 0000 - 14 OFFF ZORAN #3
20-
21 -14 1000- 14 IFFF ZORAN #4
22-
2.3 18 0000 - 19 FFFF ZORAN BUS #2 PRAM
24-
25 - IC 0000 VPH STATUS LATCH
26-
27 - IC 6004 ZORAN RESET LATCH
28-

29 - 20 0000 CPH ADDRESS (FC--011 FOR AUGMENTED XFERS) (SELECTABLE AT CPFH)
30-
31 - 20 0002 REQUEST (WRITE) OR RELINQUISH (READ) VME BUS (BYTE OR WORD)
32-
33 - 20 0004 DHB FLAG (BYTE OR WORD READ BIT DO)
34-
35 - 20 0006 AUGMENTED XFER ADDRESS COUNTER LOAD ADDRESS (WORD)
36 -
37 - 24 0000 PC INTERFACE FIFO (WORD)
38-
39 - 24 0002 PC INTERFACE STATUS/CONTROL REGISTER (WORD)
40-
41 - 24 0004 PC INTERFACE INTERRUPT REGISTER (WORD)
42 -

43 - 28 0001 - 28 001B MVMEW000 LCSR (ODD BYTES)
44 - - 1
45 - 28 0021 - 28 O02F MVME60)0 6CSR (ODD BYTES)S46 -
47 - 2000 0000 DSAC K SRAM ENABLE
48-
49 - bOO6 WW DSAC SRAM DISABLE
50 -

Page:
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Date: 2/ 9/92 File: A:MVI1E60'OO.DOC
Size: 759 Last Modified: Tue Sep 17 09:18:26 1991

1-
2 - MVME6000 Configuration Information
3 -

4-
5-
6 - The Base Address (BA) of the MVME60(0 in the 02N address space is
7 - BA = $0)28 0(0).
8-
9 - Power-up Sequence:
10 -

11- Write $0 to BA + $01 - this clears the BFDFAIL bit in the
12 - LCSR. Also selects priority arbitration.
13 -

14 - Write $20 to BA + $05 - this tells the MVIME6OO) that the
15 - local processor is a 68020.
16 -

17 - Write $6A to BA + $09 - this sets up all bus timers tsee
18 - page 4-10 in MVMEb000 manual,.
19 -

20 - Write $8D to BA + SOD - this confiQures the fM•Eo00) to use
21 - AM code SOD for all VMEbus master transactions.
22-
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Size: 576 Last Modified: Wed Jun 10 08:06:32 1992

1 -I/ IOPBOOT.ASM CREATED: 6/1/92
2 - LAST MODIFIED:6/2/92
3-
4 - THIS SUBROUTINE IS INTENDED TO WARE-UP THE
5 - THE IOP FROM THE IBMPC INTERFACE. IT IS ASSUMED
6 - THAT THE BOOT STATE MACHINE PAL IS PROGRAMMED SUCH
7 - THAT THE IBMPC INTERFACE IS SELECTED AS THE HOST8 -
9 - */

10 -
11 -
12 - PROGRAM CODESEG IORAK
13 - ORG 0
14- START: ISE CONT ; /*NECESSARY CONT INSTRUCTION FOR USEQ-/
15 - SE CONT
16 - .REG ALL,CLR
17 - C SOURCE; /CLEAR ALL RESOURCE FLAGS*/18
19 - /*INITIALIZE INTERRUPT VECTOR POINTERS*/
20 -
21 -
22 - PROGRAM ENDS
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Date: 6/30/92 File: DNLDIOP.ASM
Size: 2631 Last Modified: Wed Jun 10 12:29:08 1992

1 - /

3- + +

4 + THIS PROGRAM NEEDS TO BE MODIFIED TO +
5 - + LOAD THE COUNTER A ZERO INTERRUPT +
6 - VECTOR TO POINT TO A SERVICE ROUTINE T7 - ÷THAT WILL TERMINATE THE TRANSFER8 +

| 9 - 9 ÷..............................4 ...........1i0 - *
12 - /* DNLDIOP.ASM CREATED: 6/2/92
13 - LAST MODIFIED:
14 -
15 - TEIS SUBROUTINE IS INTENDED TO DOWNLOAD PC
16 - MICRO CODE TO THE IOP MACRO RAM. A REAL COUNTER
17 - VALUE WILL NEED TO BE USED TO LOAD COUNTER A. THEis MAXIMUM COUNT NUM1BER IS USED BERE.
19-

20 -
21 -
22 - PROGRAM CODESEG TORAM
23 - ORG 0
24 - START: $SEQ DISIR; /-DISABLE USEQUENCER IITERR-UPTS*/
25 -
26- LOOP: sQ CONT /*IS RESOURCE AVAILABLE??-/
27 - CRA SOURCE
28 - $CCS ZCNTA; -/*CHECK FOR COUNTER A = 0 s/
29 -
30 - SSEQ JPCNF, LOOP; /*WAIT FOR COUNTER A TO COUNT TO ZERO*/31-
32 LOOP1:3E I• CONT /*IS RESOURCE AVAILABLE??*/
33 - CEA SOURCE
34 CCS PCT; /*CRECK FOR PC TRANSMIT AVAILABILITY*/
35 -
36 - $SEQ JPCNF, LOOPI; /*WAIT FOR PC TRANSMIT AVAILABLE*/
37 -
39-- S CO /*WRITE CONTROL REGISTER *I

40 -CRA SOURCE
41 - SEQ.REG ENR19, SET; /*SET COUNTER A BUSY PLAG*/42-
43 SEQ CONT
44 CR CRW /*WRITE CONTROL REGISTER /
45 - $CRA SOURCE
46 - SEQ.REG ENR12, SET; /-SET IBM-PC SEND BUSY FLAG*/
47
48 SEQ CONT
49 -CRA CTA
50 - $SEQ.REG OB000000000001, OB111111111111; /-LOAD COUNTER A WITH MAXIMUM*/52
52 SSEQ CONT
53 CR CRW
54 - 5CRA PCTRAN
55- $SEQ.REG ENR12,SET; /*RESET PC XMIT INTERIPACE*/
56 -57 - SEQ CONT57
58 : EIICRCRWN
59 CRA PCT-AN
60 - SEQ.REG RRR12,CLR; /*READY PC XM4IT INTERFACE-/61-
62 SEQ CONT
63 CR CRW
64 -CRA PCTRA
65 - SEQ.REG PCXBET,PSDATA; /*SET PC XMIT FOR CLK A\32 BIT REAL DATA*/66-
67 - $SEQ CONT; /t .+. MYSTERY CODE TO LOAD COUNTER A0 INT VECTOR +..*/
68 -
69 - SEQ CONT
70 CR MWR,IBIPC; /*IBM PC SELECTED AS SOURCE-MACRO RAM DESTINATION*/
71
72 -
73 SEQ CONT
74 -CR CRW
75 -CRA PCTRAN
76- SEQ.REG ENR17, SET; /-SET POO BIT (LOW) TO BEGIN TRANSFER*/77-
78 - SSEQ ENAIR; /*ENABLE USEQUENCER INTERRUPTS*/
79 -
80 - /*COUNTER A ZERO INTERRUPT FUNCTION:
81 DISABLE INTERRUPTS
82 - CLEAR PGO BIT
83 - RESET ALL BUSY FLAGS
84 - RESET COUNTER INTERRUPT VECTOR
85 - RESET ALL USED PORTS
86 - ENABLE INTERRUPTS
87 -86 -
89 -
90 - PROGRAM ENDS

I
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Date: 6/30/92 File: UPLDDAT.ASM
Size: 3077 Last Modified: Wed Jun 10 12:11:12 1992

1 - /*
2 -- .....................................÷++

3 -+
4 + THIS PROGRAM NEEDS TO BE MODIFIED TO +5 - + LOAD THE COUNER A ZERO INTERRUPT +
6 - + VECTOR TO POINT TO A SERVICE ROUTINE +
7 - + TEAT WILL TERMINATE THE TRANSFER +
a- + +

10 -
11 -
12 - /* UPLDDAT.ASM CREATED: 6/2/92
13 - LAST MODIFIED:
14 -
15 - THIS SUBROUTINE IS INTENDED TO UPLOAD CACHE
16 - DATA TO AN IBM PC. A REAL COUNTER
17 - VALUE WILL NEED TO BE USED TO LOAD COUNTER A. THE
18 - MAXIMUM COUNT NUMBER IS USED HERE.
19 -
20 -
21-
22 - PROGRAM CODESEG IORAM
23 - ORG 0
24 - START: SSEQ DISIR; /*DISABLE USEQUENCER INTERRUPTS*/
25 -
26 - LOOP: SSEO CONT /*IS RESOURCE AVAILABLE??*/
27 - ISCm SOURCE
28 - CCS ZCNTA; /*CHECK FOR COUNTER A - 0 */
29 -
30 - SSEQ JPCNF, LOOP; /*WAIT FOR COUNTER A TO COUNT TO ZERO*/
31
32- LOOPi: -I$5 CONT /*IS RESOURCE AVAILABLE??*/
33 - CR SOURCE
34 -CCS PCR; /*CHECK FOR PC RECEIVE AVAILABILITY*/
35 -

36 - $SEQ JPCNF, LOOP1; /*WAIT FOR PC RECEIVE AVAILABLE*/37-
38- LOOP2: IM CONT
39 - SOURCE
40 - SHIOT; /*CEECX FOR ESIO TRANSMIT AVAILABILITY*/
41 -
42 - $SEQ JPCNF, LOOP2; /*WAIT FOR ESIO TRANSMIT AVAILABLE*/
43 -
44 - $SEQ CONT
45 - $CR CRW /*WRITE CONTROL REGISTER */
46 - $CRA SOURCE
47 - SEQ.REG ENR19, SET; /*SET COUNTER A BUSY FLAG*/48-
49- SSEQ CONT
50 - SCR CRW /*WRITE CONTROL REGISTER */
51 - $CRA SOURCE
52 - SSEQ.REG ENR13, SET; /*SET IBM-PC RECEIVE BUSY FLAG*/
53 -
54 - $SEQ COET
55 - SCR CRW /*WRITE CONTROL REGISTER */
56 - $CRA SOURCE
57 - SSEQ.REG ENR16, SET; /*SET HSIO SEND BUSY FLAG*/
58 C

60- CRh CNTA
61 - SEQ.REG OX001, OXFFF; /*LOAD COUNTER A WITH MAXIMUM-/
62 -
63 -BQ COSNT
64 CRCRW
65 - SCRA PCSTAT
66 - $SEQ.REG ENR12,SET; /*RESET PC RECEIVE INTERFACE*/
67 -

* 68: SEQ CONE
69 CRCRW
70 - $CRA PCSTAT
71 - $SEQ.REG ENR12,CLR; /*READY PC RECEIVE INTRRFACE*/
72 -
73- SEQ CONT
74- CR CRW
75 - CRA HSIO /*SET HSIO FOR MEMORY READ, CLK A*/
76 - $SEQ.REG 0XFEC, OXF7A; /*32 BIT REAL DATA*/
77 -
78: SEQ COST
79CR CRW
80 - CRA PCSTAT
81 - SSEQ.REG ENR19,SET; /*SET PC RECEIVE TO ALLOW INTERFACE TO SEND*/
82 -
83 - SSEQ CONT; /* +++ MYSTERY CODE TO LOAD COUNTER A-0 INT VECTOR +++ */
84 -
85 - SEQ CONT
86 - ICR ,BSIO; /1*SIO SELECTED AS SOURCE*/87-

89 SCRCRW
90 - $CRA 9IO
91 - $SEQ.REG ENR14, SET; /*SET BOO BIT (LOW) TO BEGIN TRANSFER*/
92 -
93 $SEQ ERNAIR; /*EMABLE USEQUENCER INTERRUPTS*/94-
95 - /*COUNTER A ZERO INTERRUPT FUNCTION:
96 - DISABLE INTERRUPTS
97 - CLEAR BOO BIT
98 - RESET ALL BUSY FLAGS
99 - RESET COUNTER INTERRUPT VECTOR

100 - RESET ALL USED PORTS
101 - ENABLE INTERRUPTS
102 - */
103 -
104 - PROGRAM ENDS
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Data: 6/30/92 File: DNLDCPE.ASM

Size: 3333 Last Modified: Wed Jun 10 12:09:14 1992

1 -/*S2 ...... #÷÷ ......+.........................÷÷+

3 + +
4 + THIS PROGRAM NEEDS TO BE MODIFIED TO +
5 - + LOAD THE COUNTER A ZERO INTERRUPT +
6 - + VECTOR TO POINT TO A SERVICE ROUTINE +
7 - + THAT WILL TERMINATE THE TRANSFER +
8- + +

10 -
11
12 - /* DNLDCPH.ASM CREATED: 6/2/92
13 - LAST MODIFIED:
14 -
15 - THIS SUBROUTINE IS INTENDED TO DOWNLOAD PC
16 - MICRO CODE TO THE CHP. A REAL COUNTER
17 - VALUE WILL NEED TO BE USED TO LOAD COUNTER A. THE
18 - MAXIMUM COUNT NUMBER IS USED HERE.
19 -
20 -
21 -
22 - PROGRAM CODESEG IORAM
23 - ORG 0
24 - START: $SEQ DISIR; /*DISABLE USEQUENCER INTERRUPTS*/
25 -
26- LOOP: !SE CONT /:IS RESOURCE AVAILABLE??*/27 -R SOURCE
28 CCS ZCNTA; /*CHECK FOR COUNTER A - 0 '/
29 -
30 - $SEQ JPCNF, LOOP; /*WAIT FOR COUNTER A TO COUNT TO ZERO*/
31
32 LOOPI: ISEQ CONT /*IS RESOURCE AVAILABLE??*/
33 - SOURCE
34 -CCS PCT; /*CHECK FOR PC TRANSMIT AVAILABILITY*/
35 -
36 - $SEQ JPCNF, LOOP1; /*WAIT FOR PC TRANSMIT AVAILABLE*/
37 -
38 - LOOP2: SS1 CONT
39 -C1•SOURCE
40 - SCCS HSIOR; /*CHECK FOR HSIO RECEIVE AVAILABILITY*/
41
42 - $SEQ JPCNF, LOOP2; /*WAIT FOR HSIO RECEIVE AVAILABLE*/
43 -
44 - SEQ CONT
45 - $CR CRW /*WRITE CONTROL REGISTER */
46- $CRA SOURCE
47 - SEQ.REG ENR19, SET; /-SET COUNTER A BUSY FLAG*/
48 -
49 SEQ CONT
50 $CR CRW /*WRITE CONTROL REGISTER */
51 - SCRA SOURCE
52 - $SEQ.REG ENR12, SET; /*SET IBM-PC SEND BUSY FLAG-/
53
54 - SEQ COST
55 - CR CRW /*WRITE CONTROL REGISTER */56 - CRA SOURCE

57- SEQ.REG ENRIT, SET; /*SET SIO RECEIVE BUSY FLAG*/58-
59 - SEQ CONT
60 - CRA CNTA
61 - SEQ.REG OXOG1, 0XFPF; /*LOAD COUNTER A WITH MAXIMUM*/
62 -
63 EQ COST
64 -E CORW
65 CRA PCTRAN
66 - SEQ.REG ENR12,SET; /*RESET PC XMIT INTERFACE*/
67 -
68 -SEQ CONT
69 CRCRW70 - CRA PCTRAN
71 - ISEQ.REG ENR12,CLR; /*READY PC XMIT INTERFACE*/72-
73 -SEQ
74 CR CRW
75 - CRA PCTRAN
76- SEQ.REG PCXSET,PSDATA; /-SET PC XMIT FOR CLX A\32 BIT REAL DATA*/77-
78 SSEQ CONT
79 -CRCRW
80 - $CRA HSIO
81 - $SEQ.REG ALL,CLR; /* RESET THE ESIO INTERFACE */
82 -
83 - SEQ CONT
84- CR CRW85 - CRA ESIO /*SET BSIO TO RECEICE PC 32 BIT REAL DATA*/
86 - ISEQ.REG SSIOINT,BIOPC; /*AND USE COUNTER A*/87-
88 SEQ CONT
89 -CR CRW
90 -CRA HSIO
91 SEQ.REG ENR16,SET; /*ENABLE SIO IN I/O WRITE MODE*/92-
93 - $SEQ COST; /* ++. MYSTERY CODE TO LOAD COUNTER A-0 TNT VECTOR +++
94 -
95 -SSQ CONT
96 - IBMPC; /*IBM PC SELECTED AS SOURCE-/
97
98 - SEQ CONT
99- CR CRW

100 - $CRA PCTRAN
101 - $SEQ.REG ElR17, SET; /*SET POO BIT (LOW) TO BEGIN TRANSFERW/
102 -
103 - SSEQ ERAIR; /*ENABLE USEQUENCER INTERRUPTS*/
104-
105 - /*COUNTER A ZERO INTERRUPT FUNCTION:
106 - DISABLE INTERRUPTS
107 - CLEAR POO BIT
108 - RESET ALL BUSY FLAGS
109 - RESET COUNTER INTERRUPT VECTOR
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Date: 6/30/92 File: DNLDCPH.ASM
Size: 3333 Last Modified: Wed jun 10 12:09:14 1992

--------------------------------------------------------------------------------------------------------------------------

110 - RESET ALL USED PORTS
111 - ENABLE INTERRUPTS
112 -
113-
114 -R
115 - PROGRAM ENDS
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